Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle brings space-grown strep bacteria back for study

24.08.2007
When the space shuttle Endeavour touched down at the Kennedy Space Center August 21, University of Texas Medical Branch at Galveston microbiology and immunology department chairman David Niesel was waiting by the runway, looking forward to a reunion with some of its passengers.

The space travelers Niesel was meeting weren’t astronauts. They were Streptococcus pneumoniae bacteria, members of a species commonly found in the human upper respiratory tract but in this case riding in sealed experimental containers in the shuttle’s mid-deck.

Streptococcus pneumoniae is what’s known as an “opportunistic bacterium,” one that’s normally harmless but always ready to exploit the right circumstances and cause full-blown disease. For infants, the elderly and others with weaker-than-normal immune systems — possibly including astronauts on long space flights — it can be quite dangerous.

“Strep pneumoniae is a very potent pathogen in people who are immunosuppressed — it’s the number-one cause of community-acquired pneumonia, and a leading mediator of bacteremia [bacterial blood infections] and meningitis,” Niesel said. “There’s a decline in people’s immune function the longer they’re in the space environment, and it’s been shown that other bacteria also alter their properties in microgravity — they grow faster, they tend to be more virulent and resistant to microbial treatment.”

... more about:
»Niesel »bacteria »canister »pneumonia

Niesel and other investigators want to know exactly how Streptococcus pneumoniae changes in microgravity and whether those changes could pose a threat to crew members on a mission with no chance of a quick return to Earth — for example, a months- or years-long journey to Mars and back. In 1999, they began work on SPEGIS (Streptococcus pneumoniae Expression of Genes in Space), a project to grow the bacteria in orbit and bring them back home frozen in “zero-g mode” for study.

Eight years later, six tightly sealed vials of the bugs were launched into orbit in a cold-storage experiment locker that kept them inactivated at about 39 degrees Fahrenheit. To make sure that the shuttle crew would not be exposed to a potential pathogen, the vials themselves were also packed into two sealed aluminum canisters.

On day five of the mission, with the shuttle docked to the International Space Station, the crew raised the canisters and their contents to just above human body temperature and incubated them there for 15 and a half hours. Then they transferred them to a super-cold freezer on the ISS, which dropped the temperature of the canisters to 139 degrees below zero Fahrenheit.

“That locked the bacteria at whatever stage they were at, whatever genes they were expressing and whatever proteins they had present were locked in, because no more metabolism was occurring,” Niesel said. “So we get a picture of what they were like in space at that time, which is the cool part.”

Control experiments conducted on Earth followed every step of the process as it was done in orbit, with canister transfers even timed to the minute. “Now we have two snapshots of the bacteria frozen in time, grown with the same parameters except the microgravity part, and we should be able to see the differences that result when the bacteria see this unique space environment,” Niesel continued.

The bacteria are expected to arrive in Galveston later this week or early next week, kept cold with dry ice all the way to maintain them just as they were in orbit. Once he gets the bacteria in his lab, Niesel plans to conduct complete protein and genetic analyses, as well as possible virulence studies in laboratory mice.

“Seeing the Endeavour land was the culmination of many years of preparation, persistence and uncertainty — we were originally scheduled to fly shortly after the Columbia accident — but it’s been worth the wait to get the chance to make one of the first studies of an opportunistic pathogen in space,” Niesel said. “We think it will provide important information for understanding the adaptation of bacteria to unique environments, and begin to answer the question of whether this species is a cause for concern for long-duration space travelers."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: Niesel bacteria canister pneumonia

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>