Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle brings space-grown strep bacteria back for study

24.08.2007
When the space shuttle Endeavour touched down at the Kennedy Space Center August 21, University of Texas Medical Branch at Galveston microbiology and immunology department chairman David Niesel was waiting by the runway, looking forward to a reunion with some of its passengers.

The space travelers Niesel was meeting weren’t astronauts. They were Streptococcus pneumoniae bacteria, members of a species commonly found in the human upper respiratory tract but in this case riding in sealed experimental containers in the shuttle’s mid-deck.

Streptococcus pneumoniae is what’s known as an “opportunistic bacterium,” one that’s normally harmless but always ready to exploit the right circumstances and cause full-blown disease. For infants, the elderly and others with weaker-than-normal immune systems — possibly including astronauts on long space flights — it can be quite dangerous.

“Strep pneumoniae is a very potent pathogen in people who are immunosuppressed — it’s the number-one cause of community-acquired pneumonia, and a leading mediator of bacteremia [bacterial blood infections] and meningitis,” Niesel said. “There’s a decline in people’s immune function the longer they’re in the space environment, and it’s been shown that other bacteria also alter their properties in microgravity — they grow faster, they tend to be more virulent and resistant to microbial treatment.”

... more about:
»Niesel »bacteria »canister »pneumonia

Niesel and other investigators want to know exactly how Streptococcus pneumoniae changes in microgravity and whether those changes could pose a threat to crew members on a mission with no chance of a quick return to Earth — for example, a months- or years-long journey to Mars and back. In 1999, they began work on SPEGIS (Streptococcus pneumoniae Expression of Genes in Space), a project to grow the bacteria in orbit and bring them back home frozen in “zero-g mode” for study.

Eight years later, six tightly sealed vials of the bugs were launched into orbit in a cold-storage experiment locker that kept them inactivated at about 39 degrees Fahrenheit. To make sure that the shuttle crew would not be exposed to a potential pathogen, the vials themselves were also packed into two sealed aluminum canisters.

On day five of the mission, with the shuttle docked to the International Space Station, the crew raised the canisters and their contents to just above human body temperature and incubated them there for 15 and a half hours. Then they transferred them to a super-cold freezer on the ISS, which dropped the temperature of the canisters to 139 degrees below zero Fahrenheit.

“That locked the bacteria at whatever stage they were at, whatever genes they were expressing and whatever proteins they had present were locked in, because no more metabolism was occurring,” Niesel said. “So we get a picture of what they were like in space at that time, which is the cool part.”

Control experiments conducted on Earth followed every step of the process as it was done in orbit, with canister transfers even timed to the minute. “Now we have two snapshots of the bacteria frozen in time, grown with the same parameters except the microgravity part, and we should be able to see the differences that result when the bacteria see this unique space environment,” Niesel continued.

The bacteria are expected to arrive in Galveston later this week or early next week, kept cold with dry ice all the way to maintain them just as they were in orbit. Once he gets the bacteria in his lab, Niesel plans to conduct complete protein and genetic analyses, as well as possible virulence studies in laboratory mice.

“Seeing the Endeavour land was the culmination of many years of preparation, persistence and uncertainty — we were originally scheduled to fly shortly after the Columbia accident — but it’s been worth the wait to get the chance to make one of the first studies of an opportunistic pathogen in space,” Niesel said. “We think it will provide important information for understanding the adaptation of bacteria to unique environments, and begin to answer the question of whether this species is a cause for concern for long-duration space travelers."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: Niesel bacteria canister pneumonia

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>