Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-body experiences induced in the laboratory

24.08.2007
People who have come close to death sometimes report what are known as out-of-body experiences, in which they have seen themselves from somewhere else in the room.

Scientists at the Swedish medical university Karolinska Institutet have now come up with a technique that recreates this sensation in fully conscious healthy volunteers. They hope that this technique will enable them to study the relationship between the body and the 'self' in the laboratory environment.

“The idea for the study came to me several years ago”, says Dr Henrik Ehrsson, research leader in the Department of Clinical Neuroscience. “I wondered what would happen if you moved a person’s eyes to somewhere else in the room. It has been found that the visual perspective is crucial in determining how the ego is experienced.”

The experiments involve the scientists connecting two video cameras placed side by side - like robot eyes - to a display on the volunteer's head, one camera for each eye. The cameras are positioned behind the volunteers and aimed at them. The volunteers then see themselves from outside, as if they were someone else looking at them.

But to be able to induce an out-of-body experience it is also necessary for the volunteers to sense their self outside their physical body. The scientist can induce such a sensation by standing in front of the cameras and poking a point just below them, that is to say the chest of the “phantom body” – the illusory body the volunteers perceive outside their physical body – while the actual chest is touched without the volunteers seeing that this is being done.

“The brain then responds to the hand that touches the illusory body, whereupon the volunteer has a powerful experience of being several metres outside their actual body”, says Dr Ehrsson. “The self has thus moved two metres in space and left the actual body, which instead feels like an empty shell, a doll.”

To prove the illusion scientifically, Dr Ehrsson hit the phantom body of the twelve volunteers with a hammer, and measured and degree of skin sweating in response to the provocation. It was found that the volunteers exhibited the same physiological stress response as when someone's real body is threatened, but only during the periods when the volunteers were actually experiencing the out-of-body illusion.

The new tool in the laboratory environment means that it is possible for the first time to undertake scientific research on what we call the self, both fundamental research and applied research, for example in computer science.

“In the future it may be possible not just to control a person in a virtual environment but to become the virtual person, that is to say one's self will be able to move to virtual persons,” says Dr Ehrsson.

Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: Ehrsson Karolinska Institutet Laboratory volunteer

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>