Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-body experiences induced in the laboratory

24.08.2007
People who have come close to death sometimes report what are known as out-of-body experiences, in which they have seen themselves from somewhere else in the room.

Scientists at the Swedish medical university Karolinska Institutet have now come up with a technique that recreates this sensation in fully conscious healthy volunteers. They hope that this technique will enable them to study the relationship between the body and the 'self' in the laboratory environment.

“The idea for the study came to me several years ago”, says Dr Henrik Ehrsson, research leader in the Department of Clinical Neuroscience. “I wondered what would happen if you moved a person’s eyes to somewhere else in the room. It has been found that the visual perspective is crucial in determining how the ego is experienced.”

The experiments involve the scientists connecting two video cameras placed side by side - like robot eyes - to a display on the volunteer's head, one camera for each eye. The cameras are positioned behind the volunteers and aimed at them. The volunteers then see themselves from outside, as if they were someone else looking at them.

But to be able to induce an out-of-body experience it is also necessary for the volunteers to sense their self outside their physical body. The scientist can induce such a sensation by standing in front of the cameras and poking a point just below them, that is to say the chest of the “phantom body” – the illusory body the volunteers perceive outside their physical body – while the actual chest is touched without the volunteers seeing that this is being done.

“The brain then responds to the hand that touches the illusory body, whereupon the volunteer has a powerful experience of being several metres outside their actual body”, says Dr Ehrsson. “The self has thus moved two metres in space and left the actual body, which instead feels like an empty shell, a doll.”

To prove the illusion scientifically, Dr Ehrsson hit the phantom body of the twelve volunteers with a hammer, and measured and degree of skin sweating in response to the provocation. It was found that the volunteers exhibited the same physiological stress response as when someone's real body is threatened, but only during the periods when the volunteers were actually experiencing the out-of-body illusion.

The new tool in the laboratory environment means that it is possible for the first time to undertake scientific research on what we call the self, both fundamental research and applied research, for example in computer science.

“In the future it may be possible not just to control a person in a virtual environment but to become the virtual person, that is to say one's self will be able to move to virtual persons,” says Dr Ehrsson.

Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: Ehrsson Karolinska Institutet Laboratory volunteer

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>