Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-body experiences induced in the laboratory

24.08.2007
People who have come close to death sometimes report what are known as out-of-body experiences, in which they have seen themselves from somewhere else in the room.

Scientists at the Swedish medical university Karolinska Institutet have now come up with a technique that recreates this sensation in fully conscious healthy volunteers. They hope that this technique will enable them to study the relationship between the body and the 'self' in the laboratory environment.

“The idea for the study came to me several years ago”, says Dr Henrik Ehrsson, research leader in the Department of Clinical Neuroscience. “I wondered what would happen if you moved a person’s eyes to somewhere else in the room. It has been found that the visual perspective is crucial in determining how the ego is experienced.”

The experiments involve the scientists connecting two video cameras placed side by side - like robot eyes - to a display on the volunteer's head, one camera for each eye. The cameras are positioned behind the volunteers and aimed at them. The volunteers then see themselves from outside, as if they were someone else looking at them.

But to be able to induce an out-of-body experience it is also necessary for the volunteers to sense their self outside their physical body. The scientist can induce such a sensation by standing in front of the cameras and poking a point just below them, that is to say the chest of the “phantom body” – the illusory body the volunteers perceive outside their physical body – while the actual chest is touched without the volunteers seeing that this is being done.

“The brain then responds to the hand that touches the illusory body, whereupon the volunteer has a powerful experience of being several metres outside their actual body”, says Dr Ehrsson. “The self has thus moved two metres in space and left the actual body, which instead feels like an empty shell, a doll.”

To prove the illusion scientifically, Dr Ehrsson hit the phantom body of the twelve volunteers with a hammer, and measured and degree of skin sweating in response to the provocation. It was found that the volunteers exhibited the same physiological stress response as when someone's real body is threatened, but only during the periods when the volunteers were actually experiencing the out-of-body illusion.

The new tool in the laboratory environment means that it is possible for the first time to undertake scientific research on what we call the self, both fundamental research and applied research, for example in computer science.

“In the future it may be possible not just to control a person in a virtual environment but to become the virtual person, that is to say one's self will be able to move to virtual persons,” says Dr Ehrsson.

Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: Ehrsson Karolinska Institutet Laboratory volunteer

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>