Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene triggers obsessive compulsive disorder-like syndrome in mice

23.08.2007
Study suggests new treatment targets

Using genetic engineering, researchers have created an obsessive-compulsive disorder (OCD) - like set of behaviors in mice and reversed them with antidepressants and genetic targeting of a key brain circuit. The study, by National Institutes of Health (NIH) -funded researchers, suggests new strategies for treating the disorder.

Researchers bred mice without a specific gene, and found defects in a brain circuit previously implicated in OCD. Much like people with a form of OCD, the mice engaged in compulsive grooming, which led to bald patches with open sores on their heads. They also exhibited anxiety-like behaviors. When the missing gene was reinserted into the circuit, both the behaviors and the defects were largely prevented.

The gene, SAPAP3, makes a protein that helps brain cells communicate via the glutamate chemical messenger system.

“Since this is the first study to directly link OCD-like behaviors to abnormalities in the glutamate system in a specific brain circuit, it may lead to new targets for drug development,” explained Guoping Feng, Ph.D., Duke University, whose study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Mental Health, and the National Institute of Environmental Health Sciences (NIEHS). “An imbalance in SAPAP3 gene-related circuitry could help explain OCD.”

Feng, Jeffrey Welch, Ph.D., Jing Lu, Ph.D., William Wetsel, Ph.D., Nicole Calakos, M.D., Ph.D., and colleagues report on their discovery in the August 23, 2007, issue of Nature.

“This serendipitous discovery illustrates how pursuit of basic science questions can provide important insights with promising clinical implications into poorly understood diseases,” said NINDS director Story C. Landis, Ph.D.

“Ultimately, the challenge will be to translate what we learn from this stunning new genetic animal model into help for the 2.2 million American adults haunted by unwanted thoughts and repetitive behaviors,” added NIMH director Thomas R. Insel, M.D., who conducted clinical studies on OCD earlier in his career.

Previous studies of OCD had implicated a circuit in which the striatum, which straddles the middle of the brain, processes decisions by the cortex, the executive hub at the front of the brain. But exactly how circuit communications might go awry remained a mystery, and glutamate was not a prime suspect.

Nor were Feng and colleagues initially interested in OCD. Rather, they sought to understand the function of the protein made by the SAPAP3 gene, which is involved in glutamate-mediated communications in the cortex-striatum circuit. To find out how it worked, they used genetic engineering to generate SAPAP3 knockout mice.

The mice seemed normal at first, but after four to six months, all developed telltale bald patches of raw flesh on their faces, caused by compulsive scratching. Videotapes confirmed that the sores were self-inflicted – grooming behavior gone amok.

“We were surprised by the magnitude of this phenomenon,” recalled Feng. “The parallels with OCD were pretty striking.”

In a series of behavioral tests, his team determined that the SAPAP3 knockout mice also showed anxiety-like behaviors, often associated with OCD. They were slower to venture into – and quicker to exit – risky environments. And like their human counterparts, the animals responded to treatment with a serotonin selective reuptake inhibitor (fluoxetine), which reduced both the excessive grooming and anxiety-like behaviors.

SAPAP3 is the only member of a glutamate-regulating family of proteins that is present in large amounts in the striatum. It is part of the machinery at the receiving end of the connections between brain cells, where the neurotransmitter binds to receptors, triggering increased activity among the cells.

The researchers found that lack of SAPAP3 genes dampened the increased activity usually caused by glutamate and stunted the development and functioning of circuit connections.

When the researchers injected the striatum of seven-day-old knockout mice with a probe containing the SAPAP3 gene, it protected them from developing the OCD and anxiety-like behaviors 4 to 6 months later and corrected the circuit dysfunction. This confirmed that the absence of the SAPAP3 gene in the striatum was indeed responsible for the OCD-like effects.

The findings suggest that anxiety-related behavior may stem from the striatum, which serves as a pivotal link between the cortex and emotion hubs. The researchers note that recent genetic studies of OCD have hinted at involvement of glutamate-related mechanisms.

Feng’s team is also looking beyond the SAPAP3 gene to other related genes in the circuit that could lead to similar behavioral problems. They are exploring how the SAPAP3 gene affects neural communications and how it works at the molecular level – with an eye to possible applications in drug development. Collaborating clinical investigators are exploring whether specific variants of the SAPAP3 gene in humans may be related to OCD spectrum disorders, such as trichotillomania, or obsessive hair pulling – a human syndrome also characterized by bald patches on the head.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/healthinformation/ocdmenu.cfm
http://www.nlm.nih.gov/medlineplus/ency/article/001517.htm
http://www.niehs.nih.gov/

Further reports about: Genetic OCD Researchers SAPAP3 Striatum anxiety-like circuit compulsive glutamate

More articles from Life Sciences:

nachricht Enzyme with surprising dual function
24.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Flexibility and arrangement - the interaction of ribonucleic acid and water
24.01.2018 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>