Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biorefining of corn brings gelatin production into the 21st century

23.08.2007
Scientists are reporting an advance toward turning corn plants into natural factories for producing gelatin to replace animal-sourced gelatin widely used by the pharmaceutical industry for manufacturing capsules and tablets.

The advance, described today at the 234th national meeting of the American Chemical Society, may lead to a safe, inexpensive source of this protein for manufacturers who now rely on material obtained as a by-product of meat production.

Today, production of gelatin, a jelly-like substance, relies on the same fundamental methodology employed since commercial production began in the 17th century: Gelatin is derived from the break-down of collagen, which is a component of skin, tendon, bone, cartilage and connective tissue of animals. While there are no naturally occurring plant sources of gelatin, scientists have successfully modified plants, such as corn, to have a gene that results in the production of “recombinant” gelatin.

About 55,000 tons of animal-sourced gelatin are used every year to produce capsules and tablets for medicinal purposes. Plant-derived recombinant gelatin would address concerns about the possible presence of infectious agents in animal by-products and the lack of traceability of the source of the raw materials currently used to make gelatin. However, finding ways to recover and purify recombinant gelatin from plants has remained a challenge because only very low levels accumulate at the early stages of the development process.

... more about:
»Source »method »purification »recombinant

Now, scientists at Iowa State University in Ames and FibroGen, Inc., in South San Francisco say they have developed a purification process to recover these small quantities of recombinant gelatin present in the early generations of transgenic corn. The method uses a four-step recovery system to separate the recombinant protein from other corn proteins with sufficient purity that its structure and composition can be verified, says Charles Glatz, Ph.D., a chemical engineer at Iowa State University who directed the work.

“Protein production from transgenic plants is a challenging process, with potential pitfalls all along the way,” Glatz says. “It is important to develop methods in the early stages of the development program to purify gelatin to demonstrate that it can be produced properly.”

The studies establish transgenic corn as a viable way to produce gelatin and potentially other products, Glatz says. In time, researchers may also be able to develop a variety of “designer” gelatins, with specific molecular weights and properties tailored to suit various needs of products containing gelatin.

“Corn is an ideal production unit, because it can handle high volumes at a low cost,” he says. In addition the recombinant gelatin is free from the safety concerns of using meat byproducts.

The purification process relies on chromatographic and filtration techniques, building upon methods developed by FibroGen to recover recombinant gelatin produced in yeast.

Glatz says ultrafiltration allowed the group to take advantage of the size difference between the recombinant protein and other corn proteins.

“This step greatly reduced the process volume for later chromatographic steps, and was crucial to achieving a high purification factor.”

The group is now working to refine the method and boost the overall recombinant protein yields in corn, he says. Though the procedure requires more testing, Glatz says the technique could someday be used to produce high-grade gelatin in a safe and inexpensive manner.

Overall costs could be further reduced by combining the production of gelatin in corn with the extraction of non-protein parts of the grain — such as oils and starches — that are now grown and harvested for biodiesel and ethanol production, he adds.

“Corn wouldn’t be planted for its gelatin alone, but those products could help off-set the cost of biorefineries that use corn to produce other products,” he says.

Cheng Zhang, a doctoral student at Iowa State University, presented details of the new purification process at the American Chemical Society meeting.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acspresscenter.org
http://chemistry.org/bostonnews/images.html

Further reports about: Source method purification recombinant

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>