Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound in broccoli could boost immune system, says new study

23.08.2007
A compound found in broccoli and related vegetables may have more health-boosting tricks up its sleeves, according to a new study led by researchers at the University of California, Berkeley.

Veggie fans can already point to some cancer-fighting properties of 3,3'-diindolylmethane (DIM), a chemical produced from the compound indole-3-carbinol when Brassica vegetables such as broccoli, cabbage and kale are chewed and digested. Animal studies have shown that DIM can actually stop the growth of certain cancer cells.

This new study in mice, published online today (Monday, Aug. 20) in the Journal of Nutritional Biochemistry, shows that DIM may help boost the immune system as well.

"We provide clear evidence that DIM is effective in augmenting the immune response for the mice in the study, and we know that the immune system is important in defending the body against infections of many kinds and cancer," said Leonard Bjeldanes, UC Berkeley professor of toxicology and principal investigator of the study. "This finding bodes well for DIM as a protective agent against major human maladies."

Previous studies led by Bjeldanes and Gary Firestone, UC Berkeley professor of molecular and cell biology, have shown that DIM halts the division of breast cancer cells and inhibits testosterone, the male hormone needed for growth of prostate cancer cells.

In the new study, the researchers found increased blood levels of cytokines, proteins which help regulate the cells of the immune system, in mice that had been fed solutions containing doses of DIM at a concentration of 30 milligrams per kilogram. Specifically, DIM led to a jump in levels of four types of cytokines: interleukin 6, granulocyte colony-stimulating factor, interleukin 12 and interferon-gamma.

"As far as we know, this is the first report to show an immune stimulating effect for DIM," said study lead author Ling Xue, who was a Ph.D. student in Bjeldanes' lab at the time of the study and is now a post-doctoral researcher in molecular and cell biology at UC Berkeley.

In cell cultures, the researchers also found that, compared with a control sample, a 10 micromolar dose of DIM doubled the number of white blood cells, or lymphocytes, which help the body fight infections by killing or engulfing pathogens. (A large plateful of broccoli can yield a 5-10 micromolar dose of DIM.)

When DIM was combined with other agents known to induce the proliferation of lymphocytes, the effects were even greater than any one agent acting alone, with a three- to sixfold increase in the number of white blood cells in the culture.

"It is well-known that the immune system can seek out and destroy tumor cells, and even prevent tumor growth," said Xue. "An important type of T cell, called a T killer cell, can directly kill certain tumor cells, virally infected cells and sometimes parasites. This study provides strong evidence that could help explain how DIM blocks tumor growth in animals."

DIM was also able to induce higher levels of reactive oxygen species (ROS), substances which must be released by macrophages in order to kill some types of bacteria as well as tumor cells. The induction of ROS - three times that of a control culture - after DIM was added to the cell culture signaled the activation of macrophages, the researchers said.

"The effects of DIM were transient, with cytokine and lymphocyte levels going up and then down, which is what you'd expect with an immune response," said Bjeldanes. "Interestingly, to obtain the effects on the immune response, DIM must be given orally, not injected. It could be that the metabolism of the compound changes when it is injected instead of eaten."

To examine the anti-viral properties of DIM, the researchers infected mice with reoviruses, which live in the intestines but are not life-threatening. Mice that had been given oral doses of DIM were significantly more efficient in clearing the virus from their gut - as measured by the level of viruses excreted in their feces - than mice that had not been fed DIM.

"This means that DIM is augmenting the body's ability to defend itself by inhibiting the proliferation of the virus," said Bjeldanes. "Future studies will determine whether DIM has similar effects on pathogenic viruses and bacteria, including those that cause diarrhea."

The discovery of DIM's effects on the immune system helps bolster its reputation as a formidable cancer-fighter, the researchers said. "This study shows that there is a whole new universe of cancer regulation related to DIM," said Firestone, who also co-authored the new study. "There are virtually no other agents known that can both directly shut down the growth of cancer cells and enhance the function of the immune system at the same time."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Agent Bjeldanes Cytokine DIM culture effect immune system lymphocyte type white blood cell

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>