Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound in broccoli could boost immune system, says new study

23.08.2007
A compound found in broccoli and related vegetables may have more health-boosting tricks up its sleeves, according to a new study led by researchers at the University of California, Berkeley.

Veggie fans can already point to some cancer-fighting properties of 3,3'-diindolylmethane (DIM), a chemical produced from the compound indole-3-carbinol when Brassica vegetables such as broccoli, cabbage and kale are chewed and digested. Animal studies have shown that DIM can actually stop the growth of certain cancer cells.

This new study in mice, published online today (Monday, Aug. 20) in the Journal of Nutritional Biochemistry, shows that DIM may help boost the immune system as well.

"We provide clear evidence that DIM is effective in augmenting the immune response for the mice in the study, and we know that the immune system is important in defending the body against infections of many kinds and cancer," said Leonard Bjeldanes, UC Berkeley professor of toxicology and principal investigator of the study. "This finding bodes well for DIM as a protective agent against major human maladies."

Previous studies led by Bjeldanes and Gary Firestone, UC Berkeley professor of molecular and cell biology, have shown that DIM halts the division of breast cancer cells and inhibits testosterone, the male hormone needed for growth of prostate cancer cells.

In the new study, the researchers found increased blood levels of cytokines, proteins which help regulate the cells of the immune system, in mice that had been fed solutions containing doses of DIM at a concentration of 30 milligrams per kilogram. Specifically, DIM led to a jump in levels of four types of cytokines: interleukin 6, granulocyte colony-stimulating factor, interleukin 12 and interferon-gamma.

"As far as we know, this is the first report to show an immune stimulating effect for DIM," said study lead author Ling Xue, who was a Ph.D. student in Bjeldanes' lab at the time of the study and is now a post-doctoral researcher in molecular and cell biology at UC Berkeley.

In cell cultures, the researchers also found that, compared with a control sample, a 10 micromolar dose of DIM doubled the number of white blood cells, or lymphocytes, which help the body fight infections by killing or engulfing pathogens. (A large plateful of broccoli can yield a 5-10 micromolar dose of DIM.)

When DIM was combined with other agents known to induce the proliferation of lymphocytes, the effects were even greater than any one agent acting alone, with a three- to sixfold increase in the number of white blood cells in the culture.

"It is well-known that the immune system can seek out and destroy tumor cells, and even prevent tumor growth," said Xue. "An important type of T cell, called a T killer cell, can directly kill certain tumor cells, virally infected cells and sometimes parasites. This study provides strong evidence that could help explain how DIM blocks tumor growth in animals."

DIM was also able to induce higher levels of reactive oxygen species (ROS), substances which must be released by macrophages in order to kill some types of bacteria as well as tumor cells. The induction of ROS - three times that of a control culture - after DIM was added to the cell culture signaled the activation of macrophages, the researchers said.

"The effects of DIM were transient, with cytokine and lymphocyte levels going up and then down, which is what you'd expect with an immune response," said Bjeldanes. "Interestingly, to obtain the effects on the immune response, DIM must be given orally, not injected. It could be that the metabolism of the compound changes when it is injected instead of eaten."

To examine the anti-viral properties of DIM, the researchers infected mice with reoviruses, which live in the intestines but are not life-threatening. Mice that had been given oral doses of DIM were significantly more efficient in clearing the virus from their gut - as measured by the level of viruses excreted in their feces - than mice that had not been fed DIM.

"This means that DIM is augmenting the body's ability to defend itself by inhibiting the proliferation of the virus," said Bjeldanes. "Future studies will determine whether DIM has similar effects on pathogenic viruses and bacteria, including those that cause diarrhea."

The discovery of DIM's effects on the immune system helps bolster its reputation as a formidable cancer-fighter, the researchers said. "This study shows that there is a whole new universe of cancer regulation related to DIM," said Firestone, who also co-authored the new study. "There are virtually no other agents known that can both directly shut down the growth of cancer cells and enhance the function of the immune system at the same time."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Agent Bjeldanes Cytokine DIM culture effect immune system lymphocyte type white blood cell

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>