Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Social habits of cells may hold key to fighting diseases

Scientists in Manchester are working to change the social habits of living cells – an innovation that could bring about cleaner and greener fuel and help fight diseases such as cancer and diabetes.

As part of a new £18 million project spanning six countries, The Manchester Centre for Integrative Systems Biology at The University of Manchester will spearhead important new research into an emerging field of science and engineering known as Systems Biology*.

Scientists have recently discovered that networking in living cells may determine whether a cell causes diabetes or cancer or helps to maintain our health.

By adjusting and modifying the way cells network, researchers believe it’s possible to adjust the behaviour of living cells and reduce the chances of disease occurring.

... more about:
»Biology »Living »SysMO »approach

Using this approach Manchester researchers working on the Systems Biology of Microorganisms (SysMO) research programme will also drive a project that looks at how the yeast used in the production of beer and bread can be turned into an efficient producer of bioethanol.

Other work to be carried out in Manchester includes the investigation of ‘lactobacilli’. Some of these occasionally turn into flesh-eating bacteria or cause human diseases such as strep throat and rashes, whereas others are completely safe and are used in the production of cheeses and yoghurts.

It’s hoped the work will lead not only to greater understanding of how ‘wrong’ networks lead to disease, but also to the production of drugs and other foods more efficiently and safely.

Academics will also look at ‘pseudomonads’ – soil bacteria that may make people ill but can also be used to degrade nasty compounds in the environment, or to create compounds now being made by chemical industries.

Researchers will also focus on ‘thermophilic’ organisms that live naturally in hot springs, and examine how their networks enable them to survive high and varying temperatures. It’s hoped that this research will reveal how to make any living organism cope better with extreme conditions. It may also lead to better performance of detergents and cosmetics.

All research will be carried out in the Manchester Interdisciplinary Biocentre (MIB) – a unique, purpose-built, £38m facility that brings together experts from a wide range of disciplines in order to tackle major challenges in quantitative, interdisciplinary bioscience.

Professor Douglas Kell, Director of the MCISB, said: “Manchester is a leading centre for Systems Biology research and it is very exciting that so many of the SysMO projects have a Manchester component. Our involvement in these projects will allow us to achieve much added value and to develop and show best practice across all of them.”

Professor Hans Westerhoff, AstraZeneca Professor of Systems Biology and Director of the Doctoral Training Centre on Systems Biology at The University of Manchester, said: “This is a unique opportunity to begin to understand how networking contributes to the functioning of living cells inside and outside our bodies.

“It enables us to integrate the best groups from six European countries and will address four concrete issues of energy, the disease-benefit balance, white biotechnology and robustness.”

Systems Biology combines molecular biology and mathematics, which have traditionally been seen as the equivalents of fire and water. This type of research is still viewed as controversial by some in the scientific community.

But researchers involved in SysMO believe this approach will allow them to obtain a very large set of mathematical equations that describe living cells.

This may then allow those cells to be engineered in a number of ways, with numerous benefits in the field of medicine and in the commercial world.

The SysMO scheme is funding a total of 11 programmes that run for three years in the first instance. It is being financed by the UK, Austria, Germany, The Netherlands, Spain and Norway.

Professor Julia Goodfellow, BBSRC Chief Executive, said: "In order to remain internationally competitive in the biosciences, the research community must look to a future which is increasingly quantitative and data rich. We have to adopt approaches which enable us to look at the whole system.”

In March 2005, The Manchester Centre for Integrative Systems Biology (MCISB) was awarded over £6m to pioneer an entirely new approach to biology. It boasts a virtually unique training centre for this topic and through SysMO has now become a major hub in the first transnational Systems Biology research program.

Jon Keighren | alfa
Further information:

Further reports about: Biology Living SysMO approach

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>