Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isolation of a new gene family essential for early development

23.08.2007
How embryonic stem cells work

All organisms consist of a number of different cell types each producing different proteins. The nerve cells produce proteins necessary for the nerve cell function; the muscle cells proteins necessary for the muscle function and so on. All these specialised cells originate from the same cell type – the embryonic stem cells. In a highly controlled process called differentiation, the stem cells are induced to become specialised cells.

Gene family helps regulate stem cell differentiation

The BRIC researchers have now identified a new gene family, which by modifying gene expression is essential for the regulation of the differentiation process. These results have been obtained by using both human and mouse stem cells, as well as by studying the devel-opment of the round worm, C. elegans.

Perspectives

The new findings are in line with a number of recent publications that support the idea that differentiation may not entirely be a “one-way process”, and may have impact on the therapeutic use of stem cells for the treatment of various genetic diseases such as cancer and Alzheimers disease.

The research was carried out by a team led by Professor Kristian Helin at the new established Centre for Epigenetics at BRIC, University of Copenhagen, in cooperation with researchers at the University of Edinburgh, and the Weizmann Institute of Science, Israel.

Epigenetics

Epigenetics is a relatively new field of research but nonetheless “hot” within biotechnological and biomedical research now. With the open-ing of Centre for Epigenetics University of Copenhagen joins the re-search front internationally, e.g. the EU has initiated a research net work for epigenetics – see http://epigenome.eu

Centre for Epigenetics is financed by the Danish Research Founda-tion for a period of five years as one of the eight newly established “Centres of Excellence”. The centre, which consists of four research groups, is led by Professor Kristian Helin, BRIC, University of Copenhagen.

Kristian Helin | alfa
Further information:
http://www.bric.dk
http://epigenome.eu

Further reports about: Differentiation Epigenetics proteins stem cells

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>