Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecular zip code, and a new drug target for Huntington's disease

22.08.2007
McMaster University researchers have first insight into how Huntington's disease is triggered

McMaster University researchers have first insight into how Huntington's disease (HD) is triggered. The research will be published online in the British Journal, Human Molecular Genetics, on Monday, August 20.

"These are exciting results by the McMaster team,” said Dr. Rémi Quirion, Scientific Director at the Canadian Institutes of Health Research, Institute of Neuroscience, Mental Health and Addiction. Even if the huntingtin protein has been known for almost 20 years, the cause of Huntington’s disease is still not clear. Data reported here shed new lights on this aspect and possibly leading to new therapeutic potential in the future."

Ray Truant, professor in the Department of Biochemistry and Biomedical Sciences, has been studying the biological role of the huntingtin protein and the sequences in the protein that tell it where to go within a brain cell.

... more about:
»Huntingtin »Huntington' »Lab »Nucleus

Huntington disease (HD) is a neurological disorder resulting from degeneration of brain cells. The degeneration causes uncontrolled limb movements and loss of intellectual faculties, eventually leading to death. There is no treatment. HD is a familial disease, passed from parent to child through a mutation in the normal gene. The disorder is estimated to affect about one in every 10,000 persons.

Truant and PhD candidate graduate student, Randy Singh Atwal, have discovered a small protein sequence in huntingtin that allows it to locate to the part of the cell critical for protein quality control. Similar findings have been seen to be very important for other neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases.

Huntingtin protein is essential for normal development in all mammals, and is found in all cells, yet its function was unknown. It appears that huntingtin is crucial for a brain cell’s response to stress, and moves from the endoplasmic reticulum into the nucleus, the control centre of the cell. When mutant huntingtin is expressed however, it enters the nucleus as it should in response to stress, but it cannot exit properly, piling up in the nucleus and leading to brain cell death in HD.

“What is important to Huntington disease research is that in the learning of the basic cell biology of this protein, we have also uncovered a new drug target for the disease,” says Atwal.

Atwal additionally found that huntingtin can be sent to the nucleus by protein modifying enzymes called kinases, and he has determined the three-dimensional shape of this sequence.

Truant and Atwal’s work indicates that if mutant huntingtin is prevented from entering the nucleus, it cannot kill a brain cell. This means that a kinase inhibitor drug may be effective for Huntington's disease. Kinase inhibitors form the largest number of successful new generation drugs that are coming to market for a plethora of diseases including stroke, arthritis and cancer.

“This is most exciting to us, because we immediately have all the tools and support in hand at McMaster to quickly hunt this kinase down, and find potential new drugs for Huntington’s disease in ways that are similar or better than a large pharmaceutical company”, says Truant. Truant’s lab is also collaborating in the US with the Cure Huntington’s Disease Initiative (CHDI) a novel, non-profit virtual pharmaceutical company focused on HD.

A large portion of this work was completed in the new McMaster biophotonics facility (www.macbiophotonics.ca), and additional research will be done in McMaster’s unique high throughput screening lab (hts.mcmaster.ca) and other new labs being established at the University.

“We can actually watch huntingtin protein move inside of a single live brain cell in real time in response to stress, and we can watch mutant huntingtin kill that cell, even over days,” says Truant. “Using molecular tools, computer software and sophisticated laser microscopy techniques which we’ve been developing at McMaster over the last seven years, researchers can now use these methods to hopefully watch a drug stop this from happening.”

Truant’s laboratory is supported by grants from the United States High Q Foundation, the Canadian Institutes of Health Research, the Huntington Society of Canada and the Canada Foundation for Innovation.

“This discovery reflects Dr. Truant’s growing contribution to the international campaign to create a world free from Huntington disease,” says Don Lamont, CEO & Executive Director of the Huntington Society of Canada – Canada’s only organization focused on research, education and support in the HD field.

“Our families live on a ‘tightrope’ waiting for an effective treatment or a cure for HD”, says Lamont. “The discovery provides hope for the Huntington community – most of all, hope that their children will not have to suffer the devastation of this inherited disease.”

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Huntingtin Huntington' Lab Nucleus

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>