Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecular zip code, and a new drug target for Huntington's disease

22.08.2007
McMaster University researchers have first insight into how Huntington's disease is triggered

McMaster University researchers have first insight into how Huntington's disease (HD) is triggered. The research will be published online in the British Journal, Human Molecular Genetics, on Monday, August 20.

"These are exciting results by the McMaster team,” said Dr. Rémi Quirion, Scientific Director at the Canadian Institutes of Health Research, Institute of Neuroscience, Mental Health and Addiction. Even if the huntingtin protein has been known for almost 20 years, the cause of Huntington’s disease is still not clear. Data reported here shed new lights on this aspect and possibly leading to new therapeutic potential in the future."

Ray Truant, professor in the Department of Biochemistry and Biomedical Sciences, has been studying the biological role of the huntingtin protein and the sequences in the protein that tell it where to go within a brain cell.

... more about:
»Huntingtin »Huntington' »Lab »Nucleus

Huntington disease (HD) is a neurological disorder resulting from degeneration of brain cells. The degeneration causes uncontrolled limb movements and loss of intellectual faculties, eventually leading to death. There is no treatment. HD is a familial disease, passed from parent to child through a mutation in the normal gene. The disorder is estimated to affect about one in every 10,000 persons.

Truant and PhD candidate graduate student, Randy Singh Atwal, have discovered a small protein sequence in huntingtin that allows it to locate to the part of the cell critical for protein quality control. Similar findings have been seen to be very important for other neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases.

Huntingtin protein is essential for normal development in all mammals, and is found in all cells, yet its function was unknown. It appears that huntingtin is crucial for a brain cell’s response to stress, and moves from the endoplasmic reticulum into the nucleus, the control centre of the cell. When mutant huntingtin is expressed however, it enters the nucleus as it should in response to stress, but it cannot exit properly, piling up in the nucleus and leading to brain cell death in HD.

“What is important to Huntington disease research is that in the learning of the basic cell biology of this protein, we have also uncovered a new drug target for the disease,” says Atwal.

Atwal additionally found that huntingtin can be sent to the nucleus by protein modifying enzymes called kinases, and he has determined the three-dimensional shape of this sequence.

Truant and Atwal’s work indicates that if mutant huntingtin is prevented from entering the nucleus, it cannot kill a brain cell. This means that a kinase inhibitor drug may be effective for Huntington's disease. Kinase inhibitors form the largest number of successful new generation drugs that are coming to market for a plethora of diseases including stroke, arthritis and cancer.

“This is most exciting to us, because we immediately have all the tools and support in hand at McMaster to quickly hunt this kinase down, and find potential new drugs for Huntington’s disease in ways that are similar or better than a large pharmaceutical company”, says Truant. Truant’s lab is also collaborating in the US with the Cure Huntington’s Disease Initiative (CHDI) a novel, non-profit virtual pharmaceutical company focused on HD.

A large portion of this work was completed in the new McMaster biophotonics facility (www.macbiophotonics.ca), and additional research will be done in McMaster’s unique high throughput screening lab (hts.mcmaster.ca) and other new labs being established at the University.

“We can actually watch huntingtin protein move inside of a single live brain cell in real time in response to stress, and we can watch mutant huntingtin kill that cell, even over days,” says Truant. “Using molecular tools, computer software and sophisticated laser microscopy techniques which we’ve been developing at McMaster over the last seven years, researchers can now use these methods to hopefully watch a drug stop this from happening.”

Truant’s laboratory is supported by grants from the United States High Q Foundation, the Canadian Institutes of Health Research, the Huntington Society of Canada and the Canada Foundation for Innovation.

“This discovery reflects Dr. Truant’s growing contribution to the international campaign to create a world free from Huntington disease,” says Don Lamont, CEO & Executive Director of the Huntington Society of Canada – Canada’s only organization focused on research, education and support in the HD field.

“Our families live on a ‘tightrope’ waiting for an effective treatment or a cure for HD”, says Lamont. “The discovery provides hope for the Huntington community – most of all, hope that their children will not have to suffer the devastation of this inherited disease.”

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Huntingtin Huntington' Lab Nucleus

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>