Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecular zip code, and a new drug target for Huntington's disease

22.08.2007
McMaster University researchers have first insight into how Huntington's disease is triggered

McMaster University researchers have first insight into how Huntington's disease (HD) is triggered. The research will be published online in the British Journal, Human Molecular Genetics, on Monday, August 20.

"These are exciting results by the McMaster team,” said Dr. Rémi Quirion, Scientific Director at the Canadian Institutes of Health Research, Institute of Neuroscience, Mental Health and Addiction. Even if the huntingtin protein has been known for almost 20 years, the cause of Huntington’s disease is still not clear. Data reported here shed new lights on this aspect and possibly leading to new therapeutic potential in the future."

Ray Truant, professor in the Department of Biochemistry and Biomedical Sciences, has been studying the biological role of the huntingtin protein and the sequences in the protein that tell it where to go within a brain cell.

... more about:
»Huntingtin »Huntington' »Lab »Nucleus

Huntington disease (HD) is a neurological disorder resulting from degeneration of brain cells. The degeneration causes uncontrolled limb movements and loss of intellectual faculties, eventually leading to death. There is no treatment. HD is a familial disease, passed from parent to child through a mutation in the normal gene. The disorder is estimated to affect about one in every 10,000 persons.

Truant and PhD candidate graduate student, Randy Singh Atwal, have discovered a small protein sequence in huntingtin that allows it to locate to the part of the cell critical for protein quality control. Similar findings have been seen to be very important for other neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases.

Huntingtin protein is essential for normal development in all mammals, and is found in all cells, yet its function was unknown. It appears that huntingtin is crucial for a brain cell’s response to stress, and moves from the endoplasmic reticulum into the nucleus, the control centre of the cell. When mutant huntingtin is expressed however, it enters the nucleus as it should in response to stress, but it cannot exit properly, piling up in the nucleus and leading to brain cell death in HD.

“What is important to Huntington disease research is that in the learning of the basic cell biology of this protein, we have also uncovered a new drug target for the disease,” says Atwal.

Atwal additionally found that huntingtin can be sent to the nucleus by protein modifying enzymes called kinases, and he has determined the three-dimensional shape of this sequence.

Truant and Atwal’s work indicates that if mutant huntingtin is prevented from entering the nucleus, it cannot kill a brain cell. This means that a kinase inhibitor drug may be effective for Huntington's disease. Kinase inhibitors form the largest number of successful new generation drugs that are coming to market for a plethora of diseases including stroke, arthritis and cancer.

“This is most exciting to us, because we immediately have all the tools and support in hand at McMaster to quickly hunt this kinase down, and find potential new drugs for Huntington’s disease in ways that are similar or better than a large pharmaceutical company”, says Truant. Truant’s lab is also collaborating in the US with the Cure Huntington’s Disease Initiative (CHDI) a novel, non-profit virtual pharmaceutical company focused on HD.

A large portion of this work was completed in the new McMaster biophotonics facility (www.macbiophotonics.ca), and additional research will be done in McMaster’s unique high throughput screening lab (hts.mcmaster.ca) and other new labs being established at the University.

“We can actually watch huntingtin protein move inside of a single live brain cell in real time in response to stress, and we can watch mutant huntingtin kill that cell, even over days,” says Truant. “Using molecular tools, computer software and sophisticated laser microscopy techniques which we’ve been developing at McMaster over the last seven years, researchers can now use these methods to hopefully watch a drug stop this from happening.”

Truant’s laboratory is supported by grants from the United States High Q Foundation, the Canadian Institutes of Health Research, the Huntington Society of Canada and the Canada Foundation for Innovation.

“This discovery reflects Dr. Truant’s growing contribution to the international campaign to create a world free from Huntington disease,” says Don Lamont, CEO & Executive Director of the Huntington Society of Canada – Canada’s only organization focused on research, education and support in the HD field.

“Our families live on a ‘tightrope’ waiting for an effective treatment or a cure for HD”, says Lamont. “The discovery provides hope for the Huntington community – most of all, hope that their children will not have to suffer the devastation of this inherited disease.”

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Huntingtin Huntington' Lab Nucleus

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>