Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'chemically-sensitive MRI scan' may bypass some invasive diagnostic tests in next decade

22.08.2007
A new chemical compound which could remove the need for patients to undergo certain invasive diagnostic tests in the future has been created by scientists at Durham University.

Research published in the academic journal, Chemical Communications, reveals that this new compound could be used in a ‘chemically-sensitive MRI scan’ to help identify the extent of progression of diseases such as cancer, without the need for intrusive biopsies.

The researchers, who are part of an Engineering and Physical Sciences Research Council (EPSRC) funded group developing new ways of imaging cancer, have created a chemical which contains fluorine. It could, in theory, be given to the patient by injection before an MRI scan. The fluorine responds differently according to the varying acidity in the body, so that tumours could be highlighted and appear in contrast or ‘light up’ on the resulting scan.

Professor David Parker of Durham University’s Department of Chemistry explained: “There is very little fluorine present naturally in the body so the signal from our compound stands out. When it is introduced in this form it acts differently depending on the acidity levels in a certain area, offering the potential to locate and highlight cancerous tissue.”

... more about:
»MRI »fluorine

Professor Parker’s team is the first to design a version of a compound containing fluorine which enables measurements to be taken quickly enough and to be read at the right ‘frequency’ to have the potential to be used with existing MRI scanners, whilst being used at sufficiently low doses to be harmless to the patient.

Professor Parker continued: “We have taken an important first step towards the development of a selective new imaging method. However, we appreciate that there is a lot of work to do to take this laboratory work and put it into practice. In principle, this approach could be of considerable benefit in the diagnosis of diseases such as breast, liver or prostate cancer.”

Durham University has filed a patent on this new approach and is looking for commercial partners to help develop the research. Professor Parker and his team believe that molecules containing fluorine could be used in mainstream MRI diagnoses within the next decade.

Chris Hiley, Head of Policy and Research Management at The Prostate Cancer Charity, said: “This is interesting work. The researchers are still some way from testing how this new idea might work in people but they are dealing with a knotty and important problem. In prostate cancer in particular more research is needed into cancer imaging as current techniques need improving.

“This development could have applications in many other cancers too. Once transferred from the lab to the bedside this research has potential to help show exactly where cancer may be in the body. This would add certainty to treatment decisions and improve monitoring of cancer progress. Looking even further into the future it could even have some use in improving diagnosis.”

Jane Budge | EurekAlert!
Further information:
http://www.durham.ac.uk

Further reports about: MRI fluorine

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>