Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists develop nanogels that enable controlled delivery of carbohydrate drugs

Carnegie Mellon University scientists have developed tiny, spherical nanogels that uniformly release encapsulated carbohydrate-based drugs. The scientists created the nanogels using atom transfer radical polymerization (ATRP), which will ultimately enable the nanogels to deliver more drug directly to the target and to dispense the drug in a time-release manner.

The nanogels — only 200 nanometers in diameter — possess many unique properties that make them ideal drug-delivery tools, according to Daniel Siegwart, a graduate student in University Professor Krzysztof Matyjaszewski’s laboratory at Carnegie Mellon. Siegwart will present his research Monday, Aug. 20 at the 234th national meeting of the American Chemical Society in Boston.

ATRP, a controlled living radical polymerization process, allows chemists to precisely regulate the composition and architecture of the polymers they are creating. Siegwart and colleagues used ATRP in inverse miniemulsion to make nanogels with a uniform network of cross-linked polymer chains within a spherical nanoparticle.

“A uniform mesh size within the nanogels should improve the controlled release of the encapsulated drugs,” said Siegwart. “The major advance of this system is that ATRP allows one to prepare nanogels that are uniform in diameter. The size of the particles can be tuned, and we are currently investigating how nanogels of different sizes enter cells. The results may allow us to better understand the mechanism of endocytosis and to target specific tissues, such as cancer cells that have a more permeable membrane.”

... more about:
»ATRP »Carbohydrate »Polymer »Siegwart »controlled »nanogel

In their most recent advance, the Carnegie Mellon team incorporated the model carbohydrate drug rhodamine isothiocyanate-labeled dextran into the nanogel’s uniform mesh core. When the nanogels degraded, the model carbohydrate drug was released over time. The experiments were carried out with Jung Kwon Oh, a former postdoctoral associate in the Matyjaszewski lab who developed ATRP in inverse miniemulsion.

The new nanogels, which are nontoxic and biodegradable, can also accommodate molecules on their surfaces. During nanogel synthesis, the ATRP process allows scientists to incorporate “targeting groups” on the nanogel surface that can interact with specific receptors, such as those on the surface of a cancer cell. In addition, the nanogels can escape the notice of the body’s immune system, thus prolonging circulation time within the bloodstream.

“The basic composition of the nanogels is based on an analogue of poly(ethylene oxide), a well-established biocompatible polymer that can enhance blood circulation time and prevent clearance by the reticuloendothelial system, the part of the immune system that engulfs and removes foreign objects from the body,” said Siegwart.

In a recent article published in the Journal of the American Chemical Society, the Carnegie Mellon team demonstrated that its novel nanogels could be used to encapsulate doxorubicin, an anticancer drug. When the scientists mixed the doxorubicin-loaded nanogels with HeLa cancer cells in the laboratory, the doxorubicin was released, penetrating the cancer cells and significantly inhibiting their growth. They carried out this work in collaboration with Jeffrey Hollinger, professor of biomedical engineering and biological sciences and director of the Bone Tissue Engineering Center at Carnegie Mellon.

Amy Pavlak | EurekAlert!
Further information:

Further reports about: ATRP Carbohydrate Polymer Siegwart controlled nanogel

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>