Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop nanogels that enable controlled delivery of carbohydrate drugs

22.08.2007
Carnegie Mellon University scientists have developed tiny, spherical nanogels that uniformly release encapsulated carbohydrate-based drugs. The scientists created the nanogels using atom transfer radical polymerization (ATRP), which will ultimately enable the nanogels to deliver more drug directly to the target and to dispense the drug in a time-release manner.

The nanogels — only 200 nanometers in diameter — possess many unique properties that make them ideal drug-delivery tools, according to Daniel Siegwart, a graduate student in University Professor Krzysztof Matyjaszewski’s laboratory at Carnegie Mellon. Siegwart will present his research Monday, Aug. 20 at the 234th national meeting of the American Chemical Society in Boston.

ATRP, a controlled living radical polymerization process, allows chemists to precisely regulate the composition and architecture of the polymers they are creating. Siegwart and colleagues used ATRP in inverse miniemulsion to make nanogels with a uniform network of cross-linked polymer chains within a spherical nanoparticle.

“A uniform mesh size within the nanogels should improve the controlled release of the encapsulated drugs,” said Siegwart. “The major advance of this system is that ATRP allows one to prepare nanogels that are uniform in diameter. The size of the particles can be tuned, and we are currently investigating how nanogels of different sizes enter cells. The results may allow us to better understand the mechanism of endocytosis and to target specific tissues, such as cancer cells that have a more permeable membrane.”

... more about:
»ATRP »Carbohydrate »Polymer »Siegwart »controlled »nanogel

In their most recent advance, the Carnegie Mellon team incorporated the model carbohydrate drug rhodamine isothiocyanate-labeled dextran into the nanogel’s uniform mesh core. When the nanogels degraded, the model carbohydrate drug was released over time. The experiments were carried out with Jung Kwon Oh, a former postdoctoral associate in the Matyjaszewski lab who developed ATRP in inverse miniemulsion.

The new nanogels, which are nontoxic and biodegradable, can also accommodate molecules on their surfaces. During nanogel synthesis, the ATRP process allows scientists to incorporate “targeting groups” on the nanogel surface that can interact with specific receptors, such as those on the surface of a cancer cell. In addition, the nanogels can escape the notice of the body’s immune system, thus prolonging circulation time within the bloodstream.

“The basic composition of the nanogels is based on an analogue of poly(ethylene oxide), a well-established biocompatible polymer that can enhance blood circulation time and prevent clearance by the reticuloendothelial system, the part of the immune system that engulfs and removes foreign objects from the body,” said Siegwart.

In a recent article published in the Journal of the American Chemical Society, the Carnegie Mellon team demonstrated that its novel nanogels could be used to encapsulate doxorubicin, an anticancer drug. When the scientists mixed the doxorubicin-loaded nanogels with HeLa cancer cells in the laboratory, the doxorubicin was released, penetrating the cancer cells and significantly inhibiting their growth. They carried out this work in collaboration with Jeffrey Hollinger, professor of biomedical engineering and biological sciences and director of the Bone Tissue Engineering Center at Carnegie Mellon.

Amy Pavlak | EurekAlert!
Further information:
http://www.chem.cmu.edu/groups/maty/
http://www.cmu.edu

Further reports about: ATRP Carbohydrate Polymer Siegwart controlled nanogel

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>