Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find New Mechanism in the Development of Severe Inherited Disease

21.08.2007
Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have shown that the genetic defect that causes Cockayne Syndrome affects a key function of the cell – the transcription of genes coding for ribosomal RNA.

Cockayne Syndrome is a recessively inherited disorder that belongs to a group of diseases in which defects in one of the numerous DNA repair systems lead to non-functioning proteins and, thus, to severe health impairments. These disorders also include, for example, Xeroderma pigmentosum and a type of hereditary bowel cancer.

However, symptoms of Cockayne Syndrome, which is a very rare disease, are particularly severe, including dwarfism, mental retardation, hearing and vision impairments; affected individuals have a characteristically formed small head, they age prematurely and die younger. The scale of these defects suggested that a dysfunctional DNA repair mechanism alone cannot be responsible for this whole range of impairments.

Cockayne Syndrome is characterized by a defect in the CSB protein, which is the main component of a particular DNA repair system. Research results of several working groups had already suggested that CSB is additionally involved in transcription, i.e. the conversion of DNA to RNA. However, the exact mechanism had remained unknown.

... more about:
»DNA »Polymerase »RNA »Syndrome »defect »rRNA

In each cell, various RNA types are responsible for specific tasks. Thus, the so-called rRNA is a key component of the ribosomes, the protein factories of the cell. A research group headed by Professor Dr. Ingrid Grummt of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has now shown that CSB is pivotal in the production of rRNA molecules.

A basic prerequisite for the conversion of DNA to RNA is the accessibility of genes, which are normally tightly packed in the chromosome. Only if the genes are accessible can the enzyme RNA polymerase go about its work and synthesize new RNA molecules according to the DNA code. This is where CBS comes into play: It functions as an adapter between polymerase and the G9a protein, which acts like an icebreaker - making specific regions of the genetic material accessible for polymerase by chemically modifying the protein scaffold of the chromosome.

Without functioning CBS, the binding of polymerase I and G9a fails and the genes coding for rRNAs remain inaccessible for polymerase. The lack of rRNAs eventually leads to a standstill of protein synthesis in the cell – the most dramatic of imaginable consequences for an organism. This newly discovered function of CBS explains why a defect of this enzyme has such severe effects on the organism.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:
http://www.dkfz.de

Further reports about: DNA Polymerase RNA Syndrome defect rRNA

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>