Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find New Mechanism in the Development of Severe Inherited Disease

21.08.2007
Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have shown that the genetic defect that causes Cockayne Syndrome affects a key function of the cell – the transcription of genes coding for ribosomal RNA.

Cockayne Syndrome is a recessively inherited disorder that belongs to a group of diseases in which defects in one of the numerous DNA repair systems lead to non-functioning proteins and, thus, to severe health impairments. These disorders also include, for example, Xeroderma pigmentosum and a type of hereditary bowel cancer.

However, symptoms of Cockayne Syndrome, which is a very rare disease, are particularly severe, including dwarfism, mental retardation, hearing and vision impairments; affected individuals have a characteristically formed small head, they age prematurely and die younger. The scale of these defects suggested that a dysfunctional DNA repair mechanism alone cannot be responsible for this whole range of impairments.

Cockayne Syndrome is characterized by a defect in the CSB protein, which is the main component of a particular DNA repair system. Research results of several working groups had already suggested that CSB is additionally involved in transcription, i.e. the conversion of DNA to RNA. However, the exact mechanism had remained unknown.

... more about:
»DNA »Polymerase »RNA »Syndrome »defect »rRNA

In each cell, various RNA types are responsible for specific tasks. Thus, the so-called rRNA is a key component of the ribosomes, the protein factories of the cell. A research group headed by Professor Dr. Ingrid Grummt of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has now shown that CSB is pivotal in the production of rRNA molecules.

A basic prerequisite for the conversion of DNA to RNA is the accessibility of genes, which are normally tightly packed in the chromosome. Only if the genes are accessible can the enzyme RNA polymerase go about its work and synthesize new RNA molecules according to the DNA code. This is where CBS comes into play: It functions as an adapter between polymerase and the G9a protein, which acts like an icebreaker - making specific regions of the genetic material accessible for polymerase by chemically modifying the protein scaffold of the chromosome.

Without functioning CBS, the binding of polymerase I and G9a fails and the genes coding for rRNAs remain inaccessible for polymerase. The lack of rRNAs eventually leads to a standstill of protein synthesis in the cell – the most dramatic of imaginable consequences for an organism. This newly discovered function of CBS explains why a defect of this enzyme has such severe effects on the organism.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:
http://www.dkfz.de

Further reports about: DNA Polymerase RNA Syndrome defect rRNA

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>