Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If air gets scarce – new gene causes asthma in children

21.08.2007
Usually harmless external stimuli like animal hair, pollen and house dust cause a life-endangering narrowing of the bronchi in asthma patients.

An international team of scientists headed by researchers from the Ludwig-Maximilians University (LMU), Munich, and Oxford University, UK, have now been able to identify a gene that clearly increases the risk for asthma in childhood.

Dr. Thomas Illig, head of the working group Molecular Epidemiology at the GSF National Research Centre for Environment and Health in Neuherberg, near Munich, has also been involved in this large-scale study. The team examined over 300,000 genetic marker in thousands of asthmatic children and compared their data with those of healthy controls. The newly found gene, ORMDL3, is a promising object of research: it could help to improve the prevention and diagnosis of asthma, and possibly to develop a new therapy.

In Germany, one child in ten suffers from asthma – without any hope of being cured. At best, until now, only symptoms can be treated. However, the research team has now been able to identify one of the main players in the complex interaction of genetic and environmental factors that lead to asthma. The scientists used the fact that the genetic material of different individuals shows differences. One type of DNA variants is called SNPs, short for “Single Nucleotide Polymorphisms”. They can be compared and statistically analysed.

... more about:
»Asthma »Genom

To a hitherto unprecedented extent, in the present case, more than 300,000 SNPs were analysed in about 2,300 study participants, and briefly half had suffered from asthma since childhood. The comparison of their genetic data with those of their healthier contemporaries showed that several genetic variations clearly raise the risk of asthma in infancy. Above all, the gene expression of the gene ORMDL3 was influenced by them. However, significant associations must be examined in so-called replication studies of further case-control groups. “Thus, in the GAC, the Genome Analysis Centre of GSF, we have analysed an asthma population that was recruited in the LMU by Dr. Michael Kabesch, and, in this way, we could confirm the previous results”, reports Illig.

The asthma study is promoted in Germany by the National Genome Research Network (NGFN) and was carried out within the scope of the EU-financed GABRIEL project to decipher the causes of asthma. Illig is involved as a partner in both projects. Now he and his colleagues have planned follow-up investigations. “This really was an excellent joint effort that we shall continue”, the molecular biologist commented. “GSF is involved in such high-grade projects, not least because the Genome Analysis Centre is one of the few institutions that can carry out genome-wide studies on this scale. In the field of genotyping, we belong to the leading groups in Germany.”

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2007/asthmagen_en.php

Further reports about: Asthma Genom

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>