Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to out-of-control immune response in lung injury found

20.08.2007
Researchers at the University of Illinois at Chicago College of Medicine have discovered how a protein modulates the inflammatory response in sudden, life-threatening lung failure. The protein's previously unknown role is reported in the August issue of Nature Medicine.

Acute Respiratory Distress Syndrome, or ARDS, is an often fatal complication of severe traumatic injury, bacterial infections, blood transfusions and overdoses of some medications. In ARDS, the lungs become swollen with fluid and breathing becomes impossible. Thirty percent to 40 percent of patients die. There is no effective treatment.

Sepsis, an overwhelming bacterial infection of the blood and organs, is the most common cause of ARDS. When the immune system responds to the infection, molecules called inflammatory cytokines and chemokines are released. These molecules attract inflammatory white blood cells and destroy bacteria, but also lead to fever, swelling and other symptoms of shock and can wreak havoc on the patient in the course of fighting off the infection.

"Without an inflammatory response, bacterial invaders in the lungs can kill, but too intense a response can also be fatal," said Kurt Bachmaier, UIC research assistant professor in pharmacology and first author of the study. "We need a better understanding of how the immune system modulates this defense so that we can understand what goes wrong in life-threatening lung failure."

... more about:
»ARDS »Cblb »immune »inflammatory

The researchers created a mouse model that lacks the gene for a protein, called Cblb, which was known to play a crucial role in chronic inflammation and auto-immunity through regulation of T- and B-cells.

When sepsis was induced in mice with and without the Cblb gene, there was a marked difference in the level of the inflammatory response and survival. Mice lacking the Cblb gene were much less likely to survive than control mice.

The UIC researchers were able to show how Cblb regulates the immune response. They showed that in normal mice, a receptor found in lung tissue that induces the release of inflammatory cytokines and chemokines disappears from the cell surface after about an hour, ending the signaling of the immune response.

In the Cblb-deficient mice the receptor stays on the surface, and the inflammatory response is not turned off.

The researchers were also able to show that a protein that controls the production of inflammatory cytokines, called NF-kB, is induced in lung tissue after sepsis by that receptor to a much greater extent from the Cblb-deficient mice than in normal mice. NF-kB is known to induce swelling of tissues.

"There are already early-stage drug trials of treatments for ARDS targeting NF-kB," said Bachmaier. "This discovery has real clinical implications in the treatment and prevention of life-threatening lung failure."

Cblb is a potential drug target that may lead to a new class of anti-bacterial drugs, says Dr. Asrar Malik, distinguished professor and head of pharmacology and a senior author on the paper. Malik and Bachmaier have recently filed a patent on the basis of these findings.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: ARDS Cblb immune inflammatory

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>