Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-fertility in fungi — the secrets of 'DIY reproduction'

20.08.2007
Research from The University of Nottingham sheds new light on a fascinating phenomenon of the natural world — the ability of some species to reproduce sexually without a partner.

Scientists have been trying to determine how individuals of a key fungus, Aspergillus nidulans, are able to have sex without the need for a partner.

In new findings published in the journal Current Biology on August 2, they reveal that the fungus has evolved to incorporate the two different sexes into the same individual.

This means that when sex occurs the fungus activates its internal sexual machinery and in essence 'mates with itself' to produce new offspring, rather than bypassing the sexual act.

... more about:
»DIY »fungal »fungi »nidulans »sexual »species

This is a significant discovery as it helps scientists to understand how fungi reproduce in general. Fungi can cause health problems in humans and other serious animal and plant diseases, but are also useful as sources of pharmaceuticals and food products.

The long-term aim of the research is to be able to manipulate fungal sex to our own advantage, to prevent disease and help produce better strains for use in the food and biotech industries.

Dr Paul Dyer, of the School of Biology, was lead author of the study. He said: “When we think of sex in the animal world we normally associate it with males and females attracting each other and then coming together for the sexual act.”

“But things are different in the fungal and plant kingdoms, where a lot of species are 'self fertile'. This means that they are able to have sex to produce spores and seeds without the need for a compatible partner. Our findings show that Aspergillus nidulans provides a true example of 'DIY sex'.”

Self-fertilisation is thought to have developed in some plant and fungal species as a response to a scarcity of compatible mating partners. It also allows species to maintain a combination of genes — called a genotype — that is well adapted to surviving in a certain environment.

Aspergillus nidulans is often used as a model organism for scientists studying a wide range of subjects including basic genetic problems that are also applicable to humans, including recombination, DNA repair and cell metabolism.

The work was supported by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC) and also involved researchers at Northern Illinois University and CNRS in France.

Dr. Paul Dyer | EurekAlert!
Further information:
http://www.nottingham.ac.uk

Further reports about: DIY fungal fungi nidulans sexual species

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>