Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoreactors for Reaction Cascades

20.08.2007
Nanoscopic bubbles with plastic membrane and built-in enzymes for multistep one-pot reactions

Living cells are highly complex synthetic machines: Numerous multistep reactions run simultaneously side by side and with unbelievable efficiency and specificity.

For these mainly enzymatic reactions to work so well collectively, nature makes use of a variety of concepts. One of the most important of these is division into compartments. Enzymes are not only separated spatially, but also positioned in specific locations within the cell. Researchers from the Netherlands, led by Jan C. M. van Hest and Alan E. Rowan, have now developed an approach to copy this idea, as they report in the journal Angewandte Chemie.

They constructed nanoreactors by controlled positioning of two different enzymes in the central water reservoir or the plastic membrane of synthetic nanoscopic bubbles. In combination with a third enzyme in the surrounding solution, this system has made it possible to run three different enzymatic reactions simultaneously, without interference, in a “one-pot” reaction.

... more about:
»Membrane »bubbles »enzyme »polymersomes

To mimic a cellular environment, the scientists produced nanoscopic bubbles surrounded by a membrane made of a special plastic. The plastic is a block copolymer that is analogous to a lipid, the natural building block of cell membranes, in its structure, with a water-friendly “head” and a water-repellent “tail”. In analogy to liposomes, which are made from lipids, these bubbles are called polymersomes. Thanks to nearly limitless possibilities in the production of these plastic membranes, the spectrum of properties displayed by polymersomes can be precisely tailored.

The researchers produced their polymersomes such that they let small molecules pass through while forming a barrier to larger ones. This allows enzymes to be trapped inside the polymersomes (in the water reservoir) while the smaller substrate or product molecules pass through unhindered.

To demonstrate the potential of their “nanoreactors”, the researchers bound the enzyme horseradish peroxidase into the membrane itself. Within the water reservoir, they trapped the enzyme glucose oxidase. The surrounding solution contained the enzyme lipase B. Glucose molecules with four acetyl groups attached were added as the substrate. In the first step, the lipase B split off the acetyl groups. The resulting glucose could cross the membrane, where it encountered the glucose oxidase and was oxidized by it. This reaction formed hydrogen peroxide, which is just what the horseradish peroxidase was waiting for in order to convert the sample substrate ABTS (2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid))—also contained in the solution—into its radical cation.

Author: Jan C. M. van Hest, Radboud University, Nijmegen (The Netherlands), http://www.ru.nl/bio-orgchem/people/current_group/prof_dr_ir_jan_c_m/

Title: Positional Assembly of Enzymes in Polymersome Nanoreactors for Cascade Reactions

Angewandte Chemie International Edition, doi: 10.1002/anie.200701125

Jan C. M. van Hest | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.ru.nl/bio-orgchem/people/current_group/prof_dr_ir_jan_c_m/

Further reports about: Membrane bubbles enzyme polymersomes

More articles from Life Sciences:

nachricht Towards universal influenza vaccines – is Neuraminidase underrated?
22.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Towards universal influenza vaccines – is Neuraminidase underrated?

22.06.2018 | Life Sciences

Thermal Radiation from Tiny Particles

22.06.2018 | Physics and Astronomy

Polar ice may be softer than we thought

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>