Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH researchers describe new way to identify, evolve novel enzymes

17.08.2007
First technique that does not depend on prior knowledge of enzyme’s mechanism

The intricate interplay of proteins and other chemicals that underlies most biological activities requires the participation of enzymes, specialized molecules that accelerate chemical reactions between molecules. The creation of totally new enzymes can help improve the synthesis of chemicals and pharmaceuticals, devise new tools for molecular biology research, and develop new therapies. In the August 16 issue of Nature, two Massachusetts General Hospital (MGH) researchers describe a way of creating novel enzymes that, for the first time, does not require prior understanding of exactly how the enzymes work.

“To date, the only source of enzymes has been biology,” says Jack Szostak, PhD, of the MGH Department of Molecular Biology, the report’s senior author. “Great efforts are going into modifying and improving these natural enzymes, and our work demonstrates the potential of evolving completely new enzymes in the laboratory.”

Szostak and his co-author Burckhard Seelig, PhD, used a technique called mRNA display –previously developed in Szostak’s lab – that allows the identification and amplification of proteins that fit particular criteria. In order to create an enzyme that would stimulate or catalyze the joining of two segments of RNA in a way that does not occur naturally, they began by generating a library of 4 trillion small proteins with slight variations in their sequences. Each protein was then brought together with the RNA segments to be joined, called substrates.

... more about:
»MGH »Molecule »RNA »Substrate

If a particular protein induced the RNA substrates to join, resulting in a significantly larger molecule, that signified the protein was an active enzyme. The investigators could select out the larger RNA strands, generate more of the enzymes, and repeat the experiment. The induction of random mutations to produce different forms of the enzymes and reducing the time allowed for the splicing reaction enabled the development of more efficient versions by means of guided evolution.

Szostak notes that the final version of the enzyme they created is quite small and still not very stable, but it is a starting point to discovering additional strategies that may help improve its activity. The same mRNA-display technique can also identify enzymes that break down or otherwise modify their substrate molecules.

“We hope our work on optimizing this enzyme will demonstrate that we can evolve catalysts with activity as good as that of naturally occurring enzymes,” Szostak explains. “We’d also like to determine the 3D structure of our new enzyme to understand how it binds to its relatively larger substrates and catalyzes the joining of the two RNA strands.” The Alex Rich Distinguished Investigator in Molecular Biology at MGH, Szostak also is a professor of Genetics at Harvard Medical School, a Howard Hughes Medical Institute investigator and a member of the MGH Center for Computational and Integrative Biology. This study was supported by a grant from the NASA Astrobiology Institute, and Seelig’s was supported in part by the Emmy Noether-Programm of the Deutsche Forschungsgemeinschaft.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

Further reports about: MGH Molecule RNA Substrate

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>