Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BubR1: new clues for Down Syndrome?

Scientists in Portugal and the US have discovered a key mechanism involved in the correct separation of chromosomes during the formation of eggs and sperm.

The research about to be published in the journal Current Biology shows that BubR1- a gene recently shown to affect cell division – maintains the cohesion of paired chromosomes (until their time to divide) during the production of reproductive cells. Because BubR1 mutations can result in cells with abnormal numbers of chromosomes, the research has potential implications for human disorders resulting from loss or gain of chromosomes such as Down Syndrome, a disease caused by an extra copy of chromosome 21.

Deletion of the BubR1 gene has been shown to disturb chromosome separation during meiosis - the process by which the reproductive cells, sperm and eggs, are formed - although how this happens is not clear. Following the discovery of a non-lethal BubR1 mutation in fruit flies Nicolas Malmanche, Claudio E. Sunkel and colleagues– which have had a long time interest in cell division - decided to try and identify the molecular role of this gene in meiosis. Fruit flies are particularly advantageous in this case as males and females of the species use different molecular mechanisms for the distribution of chromosomes between cells during meiosis, allowing a more detailed analysis of the effects of the BubR1 mutation and consequently also of BubR1 normal role.

Cells normally have two sets of each chromosome (called homologue chromosomes) where one set has come from the father and the other set of the mother. Meiosis - the specialised cell division that produces the sperm and eggs - starts with the duplication of all the chromosomes in the cell – that at this stage stay linked and are called (sister) chromatids - followed by two sets of divisions. During the first division homologues chromosomes are separated with each of the two daughter cells receiving one, while in the second division it is the sister chromatids that are separated with each sex cell receiving one from each pair.

... more about:
»BubR1 »Distribution »Sunkel »Syndrome »meiosis »sperm

It was by analysing and comparing mutated BubR1 and normal flies throughout these processes that Malmanche, Sunkel and colleagues were able to discover that the BubR1 gene is essential to maintain sister chromatids’ linked throughout meiosis, assuring in this way a correct distribution of the genetic material in the produced sex cells. The researchers also saw that in BubR1 mutated females, a complex structure called Synaptonemal Complex (SC), which binds homologue chromosomes during the first division of the meiosis and allows recombination (exchange of genetic material between homologous chromosomes, which is essential for generation of diversity) was also disrupted. Accordingly, detailed analysis of this process of recombination in BubR1 mutant cells revealed significant alterations in its frequency and distribution.

Malmanche, Sunkel and colleagues’ discoveries reveal BubR1 gene as crucial for a proper distribution of the genetic material during eggs and sperm formation in fruit flies. But because BubR1 is conserved throughout species and also exist in humans the research have potential implications for the study of human diseases caused by abnormal chromosomal distribution such as Down’s syndrome, which incidence increases with the mother’s age and can affect as much as 4% of the births in women over 45 years old.

Most significantly Down Syndrome individuals are known to have abnormal patterns of recombination and loss of cohesion between sister chromatids exactly like the defects observed in fruit flies with a mutant BubR1gene. As Claudio Sunkel says, “our observations suggest for the first time that inappropriate or reduced function of a gene like BubR1 might be at the heart of age-related chromosome imbalance observed in humans”.

Piece researched and written by Catarina.Amorim at

Catarina Amorin | alfa
Further information:

Further reports about: BubR1 Distribution Sunkel Syndrome meiosis sperm

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>