Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BubR1: new clues for Down Syndrome?

17.08.2007
Scientists in Portugal and the US have discovered a key mechanism involved in the correct separation of chromosomes during the formation of eggs and sperm.

The research about to be published in the journal Current Biology shows that BubR1- a gene recently shown to affect cell division – maintains the cohesion of paired chromosomes (until their time to divide) during the production of reproductive cells. Because BubR1 mutations can result in cells with abnormal numbers of chromosomes, the research has potential implications for human disorders resulting from loss or gain of chromosomes such as Down Syndrome, a disease caused by an extra copy of chromosome 21.

Deletion of the BubR1 gene has been shown to disturb chromosome separation during meiosis - the process by which the reproductive cells, sperm and eggs, are formed - although how this happens is not clear. Following the discovery of a non-lethal BubR1 mutation in fruit flies Nicolas Malmanche, Claudio E. Sunkel and colleagues– which have had a long time interest in cell division - decided to try and identify the molecular role of this gene in meiosis. Fruit flies are particularly advantageous in this case as males and females of the species use different molecular mechanisms for the distribution of chromosomes between cells during meiosis, allowing a more detailed analysis of the effects of the BubR1 mutation and consequently also of BubR1 normal role.

Cells normally have two sets of each chromosome (called homologue chromosomes) where one set has come from the father and the other set of the mother. Meiosis - the specialised cell division that produces the sperm and eggs - starts with the duplication of all the chromosomes in the cell – that at this stage stay linked and are called (sister) chromatids - followed by two sets of divisions. During the first division homologues chromosomes are separated with each of the two daughter cells receiving one, while in the second division it is the sister chromatids that are separated with each sex cell receiving one from each pair.

... more about:
»BubR1 »Distribution »Sunkel »Syndrome »meiosis »sperm

It was by analysing and comparing mutated BubR1 and normal flies throughout these processes that Malmanche, Sunkel and colleagues were able to discover that the BubR1 gene is essential to maintain sister chromatids’ linked throughout meiosis, assuring in this way a correct distribution of the genetic material in the produced sex cells. The researchers also saw that in BubR1 mutated females, a complex structure called Synaptonemal Complex (SC), which binds homologue chromosomes during the first division of the meiosis and allows recombination (exchange of genetic material between homologous chromosomes, which is essential for generation of diversity) was also disrupted. Accordingly, detailed analysis of this process of recombination in BubR1 mutant cells revealed significant alterations in its frequency and distribution.

Malmanche, Sunkel and colleagues’ discoveries reveal BubR1 gene as crucial for a proper distribution of the genetic material during eggs and sperm formation in fruit flies. But because BubR1 is conserved throughout species and also exist in humans the research have potential implications for the study of human diseases caused by abnormal chromosomal distribution such as Down’s syndrome, which incidence increases with the mother’s age and can affect as much as 4% of the births in women over 45 years old.

Most significantly Down Syndrome individuals are known to have abnormal patterns of recombination and loss of cohesion between sister chromatids exactly like the defects observed in fruit flies with a mutant BubR1gene. As Claudio Sunkel says, “our observations suggest for the first time that inappropriate or reduced function of a gene like BubR1 might be at the heart of age-related chromosome imbalance observed in humans”.

Piece researched and written by Catarina.Amorim at linacre.ox.ac.uk

Catarina Amorin | alfa
Further information:
http://www.current-biology.com/

Further reports about: BubR1 Distribution Sunkel Syndrome meiosis sperm

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>