Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BubR1: new clues for Down Syndrome?

17.08.2007
Scientists in Portugal and the US have discovered a key mechanism involved in the correct separation of chromosomes during the formation of eggs and sperm.

The research about to be published in the journal Current Biology shows that BubR1- a gene recently shown to affect cell division – maintains the cohesion of paired chromosomes (until their time to divide) during the production of reproductive cells. Because BubR1 mutations can result in cells with abnormal numbers of chromosomes, the research has potential implications for human disorders resulting from loss or gain of chromosomes such as Down Syndrome, a disease caused by an extra copy of chromosome 21.

Deletion of the BubR1 gene has been shown to disturb chromosome separation during meiosis - the process by which the reproductive cells, sperm and eggs, are formed - although how this happens is not clear. Following the discovery of a non-lethal BubR1 mutation in fruit flies Nicolas Malmanche, Claudio E. Sunkel and colleagues– which have had a long time interest in cell division - decided to try and identify the molecular role of this gene in meiosis. Fruit flies are particularly advantageous in this case as males and females of the species use different molecular mechanisms for the distribution of chromosomes between cells during meiosis, allowing a more detailed analysis of the effects of the BubR1 mutation and consequently also of BubR1 normal role.

Cells normally have two sets of each chromosome (called homologue chromosomes) where one set has come from the father and the other set of the mother. Meiosis - the specialised cell division that produces the sperm and eggs - starts with the duplication of all the chromosomes in the cell – that at this stage stay linked and are called (sister) chromatids - followed by two sets of divisions. During the first division homologues chromosomes are separated with each of the two daughter cells receiving one, while in the second division it is the sister chromatids that are separated with each sex cell receiving one from each pair.

... more about:
»BubR1 »Distribution »Sunkel »Syndrome »meiosis »sperm

It was by analysing and comparing mutated BubR1 and normal flies throughout these processes that Malmanche, Sunkel and colleagues were able to discover that the BubR1 gene is essential to maintain sister chromatids’ linked throughout meiosis, assuring in this way a correct distribution of the genetic material in the produced sex cells. The researchers also saw that in BubR1 mutated females, a complex structure called Synaptonemal Complex (SC), which binds homologue chromosomes during the first division of the meiosis and allows recombination (exchange of genetic material between homologous chromosomes, which is essential for generation of diversity) was also disrupted. Accordingly, detailed analysis of this process of recombination in BubR1 mutant cells revealed significant alterations in its frequency and distribution.

Malmanche, Sunkel and colleagues’ discoveries reveal BubR1 gene as crucial for a proper distribution of the genetic material during eggs and sperm formation in fruit flies. But because BubR1 is conserved throughout species and also exist in humans the research have potential implications for the study of human diseases caused by abnormal chromosomal distribution such as Down’s syndrome, which incidence increases with the mother’s age and can affect as much as 4% of the births in women over 45 years old.

Most significantly Down Syndrome individuals are known to have abnormal patterns of recombination and loss of cohesion between sister chromatids exactly like the defects observed in fruit flies with a mutant BubR1gene. As Claudio Sunkel says, “our observations suggest for the first time that inappropriate or reduced function of a gene like BubR1 might be at the heart of age-related chromosome imbalance observed in humans”.

Piece researched and written by Catarina.Amorim at linacre.ox.ac.uk

Catarina Amorin | alfa
Further information:
http://www.current-biology.com/

Further reports about: BubR1 Distribution Sunkel Syndrome meiosis sperm

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>