Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life source to help develop new technologies

15.08.2007
The blueprint of life - DNA- could be used to enhance technologies in electronics and information storage following innovative and cutting edge science at the University of Leicester.

Dr Glenn Burley has been awarded one of only 8 coveted Advanced Research Fellowships in Chemistry worth £922,000, given annually by the Engineering and Physical Sciences Research Council (EPSRC).

The highly prestigious award will allow the Leicester research to use DNA, the molecule of inheritance, to help build tiny structures for use in technology processes and medicine.

Dr Burley said: “Astonishingly, strands of DNA can be programmed to self assemble into complex arrangements.

... more about:
»DNA »Technology »burley

“DNA scaffolds made in this way could be used to hold molecule size electronic devices or be used to build materials with precise configurations.

‘By altering parts of their structure from one conformation to another, DNA can even be used as a machine’ says Dr Burley. ‘It’s amazing that nature’s hard drive can be so versatile. The real challenge now is to harness the potential of DNA in nanotechnology. If we can achieve this, then it will enable us to build devices much smaller than we can be achieved with today’s technology.”

Dr Burley said DNA nanotechnology combines chemistry, biochemistry and physics: “In the near future devices will contain DNA components alongside traditional electronic components. Other benefits of this technology include reduced cost of device construction and the potential for use in the early diagnosis of genetic diseases.

“We could use the technology to devise new methods of constructing DNA chips that can be used to predict whether a person will be predisposed to a particular disease.

Dr Burley who is now setting up his laboratory in Leicester, and who has in the past worked in Germany and Australia, collaborates with research groups within Leicester (Departments of Physics/Astronomy and Biochemistry) as well as maintaining links with collaborators in Germany (Walter Schottky Institute, http://www.wsi.tu-muenchen.de/E24/members/rant/) and Italy (University of Modena, http://www.s3.infm.it/). He is based in the Department of Chemistry, University of Leicester.

He added: “I’m thrilled to have been given this award that will allow me the time and resources to develop address how we will build tomorrow’s devices that will not impact heavily on the environment.

“It is feasible that by the end of this fellowship, we could be in a position to start thinking about a start up company. So the commercialization timeframe is in the region of five years.”

EPSRC Head of Chemistry John Baird said: "EPSRC Advanced Research Fellowships are designed to allow the recipient to pursue research of the very highest quality, free from normal academic duties. The combination of funding, which supports not just the Fellow's salary but also provides funding for a research project, is a very attractive package. This year, a total of 50 awards were made, of which 8 were in Chemistry."

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: DNA Technology burley

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>