Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction of just 2 genes governs coloration patterns in mice

14.08.2007
Finding in ubiquitous rodents may apply much more broadly to other mammalian species

Biologists at Harvard University and the University of California, San Diego, have found that a simple interaction between just two genes determines the patterns of fur coloration that camouflage mice against their background, protecting them from many predators. The work, published this week in the journal PLoS Biology, marks one of the few instances in which specific genetic changes have been linked to an organism's ability to survive in the wild.

"Our work shows how changes in just a few genes can greatly alter an organism's appearance," says Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Faculty of Arts and Sciences. "It also illuminates the pathway by which these two genes interact to produce distinctive coloration. There's reason to believe this simple pathway may be evolutionarily conserved across mammals that display lighter bellies and darker backs, from mice to tuxedo cats to German Shepherds."

Hoekstra and co-authors Cynthia C. Steiner at UCSD and Jesse Weber at Harvard studied Peromyscus, a mouse that is the most widespread mammal in North America. Within the last several thousand years, these mice have migrated from mainland Florida to barrier islands and dunes along the Atlantic and Gulf coasts, where they now live on white sand beaches. In the process, the beach mice's coats have become markedly lighter than that of their mainland brethren.

... more about:
»Mutation »camouflage »changes »coloration »pattern

"In nature there is a tremendous amount of variation in color patterns among organisms, ranging from leopard spots to zebra stripes, that help individuals survive," says Steiner, a postdoctoral researcher in UCSD's Division of Biological Sciences. "However, we know surprisingly little about how these adaptive color patterns are generated. In this paper, we identify the genetic changes producing a simple color pattern that helps camouflage mice inhabiting the sandy dunes of Florida's Gulf and Atlantic coasts. These 'beach mice' have evolved a lighter pigmentation than their mainland relatives, a coloration that helps camouflage them from predators that include owls, herons, and hawks."

Previous research has shown that such predators, all of which hunt by sight, will preferentially catch darker mice on the white sand beaches, providing a powerful opportunity for natural selection to evolve increased camouflage.

Through a detailed genomic analysis, Hoekstra, Steiner, and Weber identified two pigmentation genes, for the melanocortin-1 receptor (Mc1r) and an agouti signaling protein (Agouti) that binds to this receptor and turns it off. A single amino-acid mutation in Mc1r gene can weaken the receptor's activity, or a mutation in the Agouti gene can increase the amount of protein present without changing the protein's sequence, also reducing Mc1r activity and yielding lighter pigmentation.

Both genes affect the type and amount of melanin in individual hairs. When both genes are turned on, the mouse is dark in color. A mutation that changes either gene leads to a somewhat blonder mouse, but it is the combination of mutations in both genes that produces a mouse very light in color.

"Thus, two different types of mutations in two different genes each contribute to the light coloration of beach mice," Hoekstra says. "This work represents a first step into understanding how unique patterns of fur color are produced via a simple interaction between genes."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Mutation camouflage changes coloration pattern

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>