Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction of just 2 genes governs coloration patterns in mice

14.08.2007
Finding in ubiquitous rodents may apply much more broadly to other mammalian species

Biologists at Harvard University and the University of California, San Diego, have found that a simple interaction between just two genes determines the patterns of fur coloration that camouflage mice against their background, protecting them from many predators. The work, published this week in the journal PLoS Biology, marks one of the few instances in which specific genetic changes have been linked to an organism's ability to survive in the wild.

"Our work shows how changes in just a few genes can greatly alter an organism's appearance," says Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Faculty of Arts and Sciences. "It also illuminates the pathway by which these two genes interact to produce distinctive coloration. There's reason to believe this simple pathway may be evolutionarily conserved across mammals that display lighter bellies and darker backs, from mice to tuxedo cats to German Shepherds."

Hoekstra and co-authors Cynthia C. Steiner at UCSD and Jesse Weber at Harvard studied Peromyscus, a mouse that is the most widespread mammal in North America. Within the last several thousand years, these mice have migrated from mainland Florida to barrier islands and dunes along the Atlantic and Gulf coasts, where they now live on white sand beaches. In the process, the beach mice's coats have become markedly lighter than that of their mainland brethren.

... more about:
»Mutation »camouflage »changes »coloration »pattern

"In nature there is a tremendous amount of variation in color patterns among organisms, ranging from leopard spots to zebra stripes, that help individuals survive," says Steiner, a postdoctoral researcher in UCSD's Division of Biological Sciences. "However, we know surprisingly little about how these adaptive color patterns are generated. In this paper, we identify the genetic changes producing a simple color pattern that helps camouflage mice inhabiting the sandy dunes of Florida's Gulf and Atlantic coasts. These 'beach mice' have evolved a lighter pigmentation than their mainland relatives, a coloration that helps camouflage them from predators that include owls, herons, and hawks."

Previous research has shown that such predators, all of which hunt by sight, will preferentially catch darker mice on the white sand beaches, providing a powerful opportunity for natural selection to evolve increased camouflage.

Through a detailed genomic analysis, Hoekstra, Steiner, and Weber identified two pigmentation genes, for the melanocortin-1 receptor (Mc1r) and an agouti signaling protein (Agouti) that binds to this receptor and turns it off. A single amino-acid mutation in Mc1r gene can weaken the receptor's activity, or a mutation in the Agouti gene can increase the amount of protein present without changing the protein's sequence, also reducing Mc1r activity and yielding lighter pigmentation.

Both genes affect the type and amount of melanin in individual hairs. When both genes are turned on, the mouse is dark in color. A mutation that changes either gene leads to a somewhat blonder mouse, but it is the combination of mutations in both genes that produces a mouse very light in color.

"Thus, two different types of mutations in two different genes each contribute to the light coloration of beach mice," Hoekstra says. "This work represents a first step into understanding how unique patterns of fur color are produced via a simple interaction between genes."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Mutation camouflage changes coloration pattern

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>