Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment effective in counteracting cocaine-induced symptoms

14.08.2007
UT Southwestern Medical Center researchers have discovered a treatment that counteracts the effects of cocaine on the human cardiovascular system, including lowering the elevated heart rate and blood pressure often found in cocaine users.

“We have found that cocaine’s effects on the cardiovascular system can be reversed by the use of a drug called dexmedetomidine, which is currently approved by the Food and Drug Administration for anesthetic purposes in operating rooms or intensive care units,” said Dr. Wanpen Vongpatanasin, associate professor of internal medicine and senior author of a study appearing in the Aug. 14 issue of the Journal of the American College of Cardiology.

Researchers used dexmedetomidine to test whether cocaine’s effect on the cardiovascular system could be muted. They found that the drug was effective in reversing the actions of cocaine on heart rate, blood pressure and vascular resistance in the skin by interfering with the ability of cocaine to increase nerve activity.

“Typically, patients with cocaine overdoses in the emergency room are treated with nitroglycerin, sedatives such as Valium, and some blood-pressure medications such as calcium channel blockers and some beta blockers,” Dr. Vongpatanasin said. “However, the standard treatments don’t alleviate all of the adverse effects of cocaine on the heart, blood pressure and central nervous system.”

The study examined results from 22 healthy adults who reported to have never used cocaine. The investigators administered a small, medically approved dose of cocaine nose drops to the study participants, which doubled their sympathetic nerve activity, part of the body’s “automatic” response system that becomes more active during times of stress. Participants experienced increases in several cardiovascular parameters including heart rate, blood pressure and resistance to blood flow in the skin.

Microelectrodes, similar to acupuncture needles, were used to record sympathetic nerve activity following doses of intranasal cocaine.

Research subjects who were treated with dexmedetomidine had a decrease in sympathetic nerve activity as well as in all three cardiovascular parameters, which returned to baseline levels measured before administration of cocaine. Dexmedetomidine proved to be more effective than intravenous saline, which was used as a placebo in another group of study participants.

Cocaine abuse in the U.S. is widespread, with nearly 35 million Americans reporting having ever tried cocaine and an estimated 7.3 million users, including 15 percent of young adults ages 18 to 25, according to the National Institute on Drug Abuse. Life-threatening emergencies related to cocaine use include sudden cardiac death, high blood pressure, stroke and acute myocardial infarctions.

“We also found that dexmedetomidine was equally effective in counteracting effects of cocaine in subjects with a rare genetic mutation thought to disrupt the effects of dexmedetomidine,” said Dr. Ronald Victor, professor of internal medicine and co-author of the study. “Because this particular mutation is more common in African-Americans than in Caucasians, our study results are applicable to a more diverse, multiethnic population.” Further research is needed, study authors said, to determine whether the treatment would be effective for acute cocaine overdose in the emergency room and to gauge whether it would be effective in reversing cocaine-induced constriction of the coronary vessels to the same degree it does in skin vessels.

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

Further reports about: Cardiovascular activity blood pressure cocaine dexmedetomidine effect

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>