Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly created cancer stem cells could aid breast cancer research

After being injected with just 100 cells, mice develop tumors that metastasize

In some ways, certain tumors resemble bee colonies, says pathologist Tan Ince. Each cancer cell in the tumor plays a specific role, and just a fraction of the cells serve as “queens,” possessing the unique ability to maintain themselves in an unspecialized state and seed new tumors. These cells can also divide and produce the “worker” cells that form the bulk of the tumor.

These “queens” are cancer stem cells. Now the lab of Whitehead Member Robert Weinberg has created such cells in a Petri dish by isolating and transforming a particular population of cells from human breast tissue. After being injected with just 100 of these transformed cells, mice developed tumors that metastasized (spread to distant tissues).

“The operational definition of a cancer stem cell is the ability to initiate a tumor, so these are cancer stem cells,” declares Weinberg, who is also an MIT professor of biology.

Ince didn’t set out to engineer these potent cells. As a post-doctoral researcher in the Weinberg lab and gynecologic pathologist at Brigham and Women’s Hospital, he was simply trying to create breast cancer models that look like real human tumors under the microscope and behave like those seen in many patients.

In more than 90 percent of human breast tumors, cancer cells resemble those lining our body’s cavities. A trained pathologist can spot the similarities under a microscope. But the cancer cells previously engineered from normal breast cells for laboratory studies looked different. Ince suspected that researchers were transforming the wrong type of cells.

Now an independent investigator at Brigham and Women’s Hospital and an instructor at Harvard Medical School, Ince developed a recipe for a new chemically defined culture medium and managed to grow a different type of human breast cell that ordinarily dies in culture. He transformed it into a cancer cell by inserting specific genes through a standard procedure.

The engineered cells proved to be extremely powerful. When Ince injected more than 100,000 of them into a mouse with a compromised immune system, it quickly developed massive, deadly tumors. In initial experiments, a few tissue slices revealed a primary tumor structure that resembled that of cancer patients with metastases.

That prompted Ince to wonder whether the cancer cells he created would metastasize if the mouse lived longer. He repeated the experiment in other mice, reducing the number of cells in the injection to as few as 100 in hopes of slowing tumor growth. The cancer cells continued to seed tumors and those tumors metastasized. In sharp contrast, scientists must inject about 1 million cells to get a tumor when working with the cancer cell lines routinely used in the laboratory.

“In the process of making a model that reflects a tumor type common in patients, I created tumor-initiating cells,” Ince explains. “That was a complete surprise.”

“This work could provide a boon to researchers who study these elusive cancer stem cells by offering a bountiful source of them,” maintains Weinberg. “Labs can easily grow the newly created cells for use in experiments.”

The study, which appears in Cancer Cell on August 13, also offers clues about the trajectory of cancer cells. A normal cell is thought to evolve progressively toward a malignant state through a series of genetic mutations. The early alterations confer uncontrolled growth, while later alterations enable the cell to migrate and invade other tissues. Over the past decades, considerable effort has gone into discovering these tumor-initiating and metastasis-initiating genetic alterations.

The new study suggests, however, that some normal cells are more prone to become tumor-initiating cells and have a higher metastatic potential when they become cancer cells than other normal cells. The culture medium Ince created favors the growth of the human breast cells with high tumor-making and metastatic potential while the standard culture medium favors cells with low tumor-making potential. Although the two types are only slightly different, the cells behave completely differently after acquiring the same mutations.

Ince confirmed this behavioral difference by taking a single human breast tissue sample, splitting it in two and growing the cells in the two culture mediums, which select for different cells. Next, he transformed the two populations with the same tumor-initiating genes, injected them in mice and watched the result. The cells that were grown in the new culture medium were 10,000 times more potent as tumor initiators and were the only ones able to metastasize. Thus genes that were previously thought to only initiate tumors initiated metastasis, which is the main cause of cancer mortality in the clinic.

“Tan has demonstrated that a critical determinant of eventual metastasis is the identity of the normal cell type that preexists in the breast and becomes the object of mutation and selection,” Weinberg says.

Alyssa Kneller | EurekAlert!
Further information:

Further reports about: Ince Medium Mutation Stem cancer cells created culture metastasize tumor-initiating

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>