Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian clock controls plant growth hormone

14.08.2007
The plant growth hormone auxin is controlled by circadian rhythms within the plant, UC Davis researchers have found. The discovery explains how plants can time their growth to take advantage of resources such as light and water, and suggests that many other processes may be influenced by circadian rhythms.

Auxin tells shoots to grow away from the ground and toward light and water. Charles Darwin conducted early experiments that showed how auxin affects plant growth. Most plants and animals have an internal clock that allows them to match their activities to the time of day or season of the year.

The circadian rhythms appear to act by "gating" the effect of auxin, the researchers said. In other words, the plant becomes more responsive to auxin at a certain time of day.

Postdoctoral researcher Michael Covington and Stacey Harmer, professor in the Section of Plant Biology at UC Davis, used microarray chips to look at thousands of genes from the laboratory plant Arabidopsis at the same time. About 10 percent showed some regulation by time of day.

... more about:
»circadian »clock »rhythm

In the auxin signaling pathway, nearly every step in the chain of events from the production of auxin through to the final growth response showed some regulation by the clock.

Covington and Harmer made plants that would glow when the auxin signaling was active. They found a natural rhythm of activity, peaking late in the night when water is most available and the plants are preparing for daylight.

A circadian response to auxin was actually observed in 1937 but then forgotten for 70 years, Harmer said. The researchers hope to understand exactly why having a functional internal clock is important for plant health.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: circadian clock rhythm

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>