Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian clock controls plant growth hormone

14.08.2007
The plant growth hormone auxin is controlled by circadian rhythms within the plant, UC Davis researchers have found. The discovery explains how plants can time their growth to take advantage of resources such as light and water, and suggests that many other processes may be influenced by circadian rhythms.

Auxin tells shoots to grow away from the ground and toward light and water. Charles Darwin conducted early experiments that showed how auxin affects plant growth. Most plants and animals have an internal clock that allows them to match their activities to the time of day or season of the year.

The circadian rhythms appear to act by "gating" the effect of auxin, the researchers said. In other words, the plant becomes more responsive to auxin at a certain time of day.

Postdoctoral researcher Michael Covington and Stacey Harmer, professor in the Section of Plant Biology at UC Davis, used microarray chips to look at thousands of genes from the laboratory plant Arabidopsis at the same time. About 10 percent showed some regulation by time of day.

... more about:
»circadian »clock »rhythm

In the auxin signaling pathway, nearly every step in the chain of events from the production of auxin through to the final growth response showed some regulation by the clock.

Covington and Harmer made plants that would glow when the auxin signaling was active. They found a natural rhythm of activity, peaking late in the night when water is most available and the plants are preparing for daylight.

A circadian response to auxin was actually observed in 1937 but then forgotten for 70 years, Harmer said. The researchers hope to understand exactly why having a functional internal clock is important for plant health.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: circadian clock rhythm

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>