Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray images help explain limits to insect body size

14.08.2007
Researchers at the U.S. Department of Energy's Argonne National Laboratory have cast new light on why the giant insects that lived millions of years ago disappeared.

In the late Paleozoic Era, with atmospheric oxygen levels reaching record highs, some insects evolved into giants. When oxygen levels returned to lower levels, the insect giants went extinct.

The basis of this gigantism is thought to lie in the insect respiratory system. In contrast to vertebrates, where blood transports oxygen from the lung to the cell, insects deliver oxygen directly through a network of blind-ending tracheal tubes. As insects get bigger, this type of oxygen transport becomes far less effective. But if the atmospheric oxygen levels increase, as they did in the late Paleozoic, then longer tracheal tubes can work. This would allow larger-sized insects—even giants—to evolve.

Recent research published in the journal Proceedings of the National Academy of Science helps confirm the hypothesis that the tracheal system actually limits how big insects can be. The research provides a specific explanation for what limits size in beetles: the constriction leading to the legs.

... more about:
»Argonne »Giant »Oxygen »limits »size »tracheal »tubes

A collaborative team of researchers from Argonne's Advanced Photon Source (APS), Midwestern University and Arizona State University wanted to study how beetles' tracheal systems change as their body sizes increase. The team took advantage of richly detailed X-ray images they produced at the APS to examine the dimensions of tracheal tubes in four beetle species, ranging in body mass by a factor of 1,000.

Overall, they found that larger beetle species devote a disproportionately greater fraction of their body to tracheal tubes than do smaller species.

The team focused in particular on the passageways that lead from the body core to the head and to the legs. They reasoned that these orifices may be bottlenecks for tracheal tubes, limiting how much oxygen can be delivered to the extremities.

“We were surprised to find that the effect is most pronounced in the orifices leading to the legs, where more and more of the space is taken up by tracheal tubes in larger species,” said Alex Kaiser, biologist at Midwestern University.

They then examined the tracheal measurements of the four species to see if they could predict the largest size of currently living beetles. The head data predicted an unrealistically large, foot-long beetle. In contrast, the leg data predicted a beetle that nicely matches the size of the largest living beetle, Titanus giganteus .

“This study is a first step toward understanding what controls body size in insects. It's the legs that count in the beetles studied here, but what matters for the other hundreds of thousands of beetle species and millions of insect species overall is still an open question,” said Jake Socha, Argonne biologist.

Funding for this work was supported by the National Science Foundation. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | alfa
Further information:
http://www.anl.gov

Further reports about: Argonne Giant Oxygen limits size tracheal tubes

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>