Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


X-ray images help explain limits to insect body size

Researchers at the U.S. Department of Energy's Argonne National Laboratory have cast new light on why the giant insects that lived millions of years ago disappeared.

In the late Paleozoic Era, with atmospheric oxygen levels reaching record highs, some insects evolved into giants. When oxygen levels returned to lower levels, the insect giants went extinct.

The basis of this gigantism is thought to lie in the insect respiratory system. In contrast to vertebrates, where blood transports oxygen from the lung to the cell, insects deliver oxygen directly through a network of blind-ending tracheal tubes. As insects get bigger, this type of oxygen transport becomes far less effective. But if the atmospheric oxygen levels increase, as they did in the late Paleozoic, then longer tracheal tubes can work. This would allow larger-sized insects—even giants—to evolve.

Recent research published in the journal Proceedings of the National Academy of Science helps confirm the hypothesis that the tracheal system actually limits how big insects can be. The research provides a specific explanation for what limits size in beetles: the constriction leading to the legs.

... more about:
»Argonne »Giant »Oxygen »limits »size »tracheal »tubes

A collaborative team of researchers from Argonne's Advanced Photon Source (APS), Midwestern University and Arizona State University wanted to study how beetles' tracheal systems change as their body sizes increase. The team took advantage of richly detailed X-ray images they produced at the APS to examine the dimensions of tracheal tubes in four beetle species, ranging in body mass by a factor of 1,000.

Overall, they found that larger beetle species devote a disproportionately greater fraction of their body to tracheal tubes than do smaller species.

The team focused in particular on the passageways that lead from the body core to the head and to the legs. They reasoned that these orifices may be bottlenecks for tracheal tubes, limiting how much oxygen can be delivered to the extremities.

“We were surprised to find that the effect is most pronounced in the orifices leading to the legs, where more and more of the space is taken up by tracheal tubes in larger species,” said Alex Kaiser, biologist at Midwestern University.

They then examined the tracheal measurements of the four species to see if they could predict the largest size of currently living beetles. The head data predicted an unrealistically large, foot-long beetle. In contrast, the leg data predicted a beetle that nicely matches the size of the largest living beetle, Titanus giganteus .

“This study is a first step toward understanding what controls body size in insects. It's the legs that count in the beetles studied here, but what matters for the other hundreds of thousands of beetle species and millions of insect species overall is still an open question,” said Jake Socha, Argonne biologist.

Funding for this work was supported by the National Science Foundation. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or at Argonne.

Sylvia Carson | alfa
Further information:

Further reports about: Argonne Giant Oxygen limits size tracheal tubes

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>