Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes

Today, researchers report for the first time that genetic variants in mitochondria—energy-producing structures harboring DNA that are inherited only from the mother—are directly linked to metabolic markers for type 2 diabetes.

The study, which highlights the role of mitochondrial genome variation in the pathogenesis of common diseases, is published online in Genome Research (

According to the Centers for Disease Control, 7% of the U.S. population has diabetes, and 90-95% of those cases are classified as type 2 diabetes. Type 2 diabetes is caused by external factors such as diet and exercise, and is influenced by several genes. While most of the genes known to be involved in diabetes susceptibility are located in the nuclear genome, a recent study estimated that more than 20% of type 2 diabetes cases may involve mutations in the mitochondrial genome.

In the study published today, the scientists compared two different rat strains; the strains possessed virtually identical nuclear genomes but different mitochondrial genomes. This eliminated any complicating effects due to environmental factors or variation in the nuclear genome. Any differences observed between the two rat strains could be attributed to variation in the mitochondria.

When comparing the two rat strains, the researchers found that the two strains exhibited significant differences related to energy metabolism and storage. One rat strain exhibited impaired glucose tolerance, reduced muscle glycogen synthesis, decreased skeletal muscle ATP (energy) levels, and decreased activity of an energy-producing enzyme called cytochrome c oxidase, when compared to the second rat strain. These metabolic characteristics are typical of diabetic individuals.

The researchers then obtained DNA sequences from mitochondria of both rat strains, and found DNA variants in genes that encode for proteins involved in energy production. Thus, for the first time, they were able to directly link inherited variation in the mitochondrial genome to metabolic markers for type 2 diabetes.

“Our study highlights the role of mitochondrial DNA variation in common genetic diseases,” says Dr. Theodore Kurtz, the lead investigator on the project. “In addition, the animal models developed in this study will open the door for future studies in which the effects of mitochondrial genome variation can be investigated on fixed nuclear genetic backgrounds.”

Maria Smit | EurekAlert!
Further information:

Further reports about: DNA Diabetes factors mitochondria mitochondrial variants

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>