Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A 'private bandwidth' for communication in bats: Evidence from insular horseshoe bats

Do bats use their ultrasonic echolocation calls to recognise their own species?

A new study in the Journal of Biogeography by Danilo Russo and colleagues suggests that this is certainly the case for horseshoe bats (Rhinolophidae). These bats find their way in the dark and detect insect prey by emitting long ultrasound calls mainly made of a constant frequency. Different rhinolophid species show different frequency values. It has been proposed that such differences are large enough to allow recognition of conspecifics.

The study proved that in Sardinia, Mediterranean (Rhinolophus euryale) and lesser (R.. hipposideros) horseshoe bats show divergence in call frequency, spacing them out more than their conspecifics living in peninsular Italy (i.e. on the mainland). Why? The reason may be the presence of a third species, the Mehely’s horseshoe bat (Rhinolophus mehelyi), practically absent on the mainland but abundant in Sardinia. This bat emits frequencies falling between the other two species: if Sardinian R..euryale and R. hipposideros broadcasted the same frequency values as in peninsular Italy, there would be significant risk of overlap and, in turn, confusion in species recognition. By calling respectively at lower and higher frequencies than on the mainland, R . euryale and R. hipposideros avoid all risk of confusion.

The authors of the study suggest this may be a special case of “character displacement”. The maintenance of a 'private bandwidth' for communication may have crucial implications for social interactions and sexual behaviour. Noticeably, in mainland regions where the three species occur together, some overlap does occur. Bats move long distances, so gene flow may operate between populations living in sympatry (i.e. occurring in the same areas) and allopatry (living in separate areas) with R. mehelyi, countering the establishment of local differences. Being sufficiently isolated (ca. 180 km distant) from the mainland coast, Sardinia proved an ideal study area to test for the occurrence of acoustical character displacement in the absence of contact with allopatric populations. Once again, islands turned out to be excellent natural laboratories to explore evolutionary patterns and processes.

Samantha Holford | alfa
Further information:

Further reports about: Frequency horseshoe

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>