Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution is driven by gene regulation

13.08.2007
It is not just what’s in your genes, it’s how you turn them on that accounts for the difference between species — at least in yeast — according to a report by Yale researchers in this week’s issue of Science.

“We’ve known for a while that the protein coding genes of humans and chimpanzees are about 99 percent the same,” said senior author Michael Snyder, the Cullman Professor of Molecular Cellular and Developmental Biology at Yale. “The challenge for biologists is accounting for what causes the substantial difference between the person and the chimp.”

Conventional wisdom has been that if the difference is not the gene content, the difference must be in the way regulation of genes produces their protein products.

Comparing gene regulation across similar organisms has been difficult because the nucleotide sequence of DNA regulatory regions, or promoters, are more variable than the sequences of their corresponding protein-coding regions, making them harder to identify by standard computer comparisons.

... more about:
»DNA »Regulation »sequence

“While many molecules that bind DNA regulatory regions have been identified as transcription factors mediating gene regulation, we have now shown that we can functionally map these interactions and identify the specific targeted promoters,” said Snyder. “We were startled to find that even the closely related species of yeast had extensively differing patterns of regulation.”

In this study, the authors found the DNA binding sites by aiming at their function, rather than their sequence. First, they isolated transcription factors that were specifically bound to DNA at their promoter sites. Then, they analyzed the sequences that were isolated to determine the similarities and differences in regulatory regions between the different species.

“By using a group of closely and more distantly related yeast whose sequences were well documented, we were able to see functional differences that had been invisible to researchers before,” said Snyder. “We expect that this approach will get us closer to understanding the balance between gene content and gene regulation in the question of human-chimp diversity.”

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.yale.edu/opa/media/audio/Snyder_20070808.mp3

Further reports about: DNA Regulation sequence

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>