Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

deCODE discovers cause of major subtype of glaucoma

13.08.2007
In a paper published today in the journal Science, scientists from deCODE genetics (Nasdaq:DCGN) and academic colleagues from the National University Hospital in Reykjavik and Uppsala University in Sweden report the discovery of two common single letter variations (SNPs) in the sequence of the human genome that appear to account for virtually all cases of a major subtype of glaucoma.

The SNPs are located in the LOXL1 gene on chromosome 15, and confer respectively 26-fold and 8-fold increases in risk of exfoliation glaucoma compared to the low-risk versions of the same markers. Approximately 25% of those in the Icelandic and Swedish study cohorts were found to have two copies of the highest risk variant, putting them at approximately 100 times the likelihood of developing exfoliation glaucoma (XFG) as are individuals with the low risk version of the same SNP. The LOXL1 protein encoded by the gene is involved in the formation of elastin fibers which, when they accumulate in the eye, cause XFG.

The paper, entitled “Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma,” is published today in the online edition of Science, and will appear in an upcoming print edition of the journal.

“This discovery is remarkable and important because the genetics has led us directly to what appears to be the sole cause of a devastating common disease. The risk conferred by these variants is such that it accounts for virtually all cases of exfoliation glaucoma, meaning that if we can neutralize the impact of these variants we might eliminate the disease. The LOXL1 protein made by this gene appears to play a role in the accumulation of microfibullar deposits that causes XFG, providing a promising mechanism to target for developing therapy. We plan to conduct additional studies to examine how we can take advantage of this finding to begin drug discovery,” said Kari Stefansson, CEO of deCODE.

... more about:
»LOXL1 »SNP »XFG »exfoliation »glaucoma »variant

The deCODE team discovered the variants by first analyzing more than 300,000 SNPs in Icelandic and Swedish glaucoma patients and control subjects, utilizing the Illumina Hap300 SNP chip. One SNP was strongly linked to exfoliation syndrome, in which fibrous deposits begin to accumulate in the front of the eye but have not yet begun to impair vision. Analysis of additional SNPs in public databases and which were not included on the chip led to the identification of the two risk variants – allele G of rs1048661 and allele G of rs3825942 – strongly linked to XFG in Icelandic and Swedish case-control cohorts. A combined total of some 16,000 patients and control subjects participated in the study.

Glaucoma is one of the most common causes of blindness worldwide. There are various types of glaucoma, all of which lead to damage in the optic nerve and progressive loss of vision. Exfoliation glaucoma is caused by the buildup of fibrous deposits on the surfaces on the front of the eye. Between 10-20% of people over the age of 60 are believed to have some degree of exfoliation syndrome, and perhaps more than half of these individuals will go on to develop exfoliation glaucoma. The progression of glaucoma can be slowed using various medications that promote the drainage of fluids from the eye and reduce pressure on the optic nerve. However, exfoliation glaucoma is often resistant to drug treatment. Little has been understood to date about the pathophysiology of the disease and there are no treatments targeting the underlying causes of the condition.

Berglind R. Olafsdottir | EurekAlert!
Further information:
http://www.decode.com

Further reports about: LOXL1 SNP XFG exfoliation glaucoma variant

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>