Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Discover Novel Pathway for Increasing “Good” Cholesterol

13.08.2007
New Target for Controlling HDL Cholesterol

Researchers at the University of Pennsylvania School of Medicine have discovered that a group of liver enzymes called proprotein convertases (PCs) may be the key to raising levels of good cholesterol (HDL-C).

Several PC enzymes, called furin, PACE4, and PCSK5A, disable another enzyme called endothelial lipase by clipping off a piece of it and by activating its inhibitor, which promotes an increased level of HDL-C in the blood.

The study appears in the current issue of Cell Metabolism.

... more about:
»HDL-C »Inhibitor »Lipase »Rader »cholesterol »endothelial

Researchers at the University of Pennsylvania School of Medicine have discovered that a group of liver enzymes called proprotein convertases (PCs) may be the key to raising levels of good cholesterol (HDL-C). The pathway by which these proteins are able to achieve an increase in HDL cholesterol involves another enzyme that normally degrades HDL-C, and was also discovered at Penn. The newly recognized relationship between these enzymes and cholesterol represents another target for ultimately controlling good cholesterol. The study appears in the current issue of Cell Metabolism.

“Several PC enzymes, called furin, PACE4, and PCSK5A, disable another enzyme called endothelial lipase by clipping off a piece of it and by activating its inhibitor,” says first author Weijun Jin, MD, Research Assistant Professor of Pharmacology. “This promotes an increased level of HDL-C in the blood.”

“We showed that mice engineered to express high levels of PCSK5A had 50 percent higher HDL-C than control mice,” says senior author Daniel J. Rader, MD, the Cooper/McLure Professor of Medicine and Associate Director of the Institute for Translational Medicine and Therapeutics at Penn.

Increased HDL-C is due to decreased endothelial lipase (EL) activity. “This is encouraging because it suggests that either the PC or EL enzyme might be targets for drug therapy to raise good cholesterol, an unmet medical need in patients with low HDL-C,” says Rader. What’s more, the increase in HDL-C was shown to promote reverse cholesterol transport, the process by which HDL protects against heart disease.

Low levels of HDL-C put people at risk for atherosclerosis, thereby increasing the risk of heart attack and stroke. Although this study was performed in mice, humans have the same proprotein convertases and endothelial lipase, and these enzymes are conserved in all vertebrates. Jin and Rader expect that the same pathway for controlling HDL-C will apply to humans.

The next step is to study how the genes for the PCs, EL itself, and EL’s inhibitor are regulated. In addition, Jin and Rader plan to test whether variation in blood levels of PCs and EL activity in humans, as well as genetic variation in their genes, is associated with variation in HDL-C levels and heart disease risk.

“We hope to identify polymorphisms in the genes for PCs, EL, and its inhibitor that are associated with HDL-C levels, thus supporting that this pathway is relevant in humans,” says Rader.

Co-authors are Xun Wang, John S. Millar, and Jane M. Glick from Penn and Thomas Quertermous (Stanford University) and George H. Rothblat (Children’s Hospital of Philadelphia). The study was funded by the National Heart, Lung, and Blood Institute and the American Heart Association.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: HDL-C Inhibitor Lipase Rader cholesterol endothelial

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>