Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequences and fossils show that the Proteaceae, a major group of Gondwanaland’s plants, spread by ...

09.08.2007
continental drift and transoceanic dispersal to modern continents

Using DNA sequence data, botanists have shown that the large southern hemisphere plant family Proteaceae lived on the super-continent Gondwanaland almost 120 million years ago. As Gondwanaland broke up, it was originally thought that these plants merely moved with the newly formed continents. But now a new study published in the Journal of Biogeography has shown that, while this is the case for some of these plants, others are far too recent to have lived at the time when the super-continent broke up. They must therefore have dispersed across oceans to reach their current distribution ranges.

Barker et al. apply a technique known as molecular dating to DNA sequences from over 40 representatives of the family from all southern continents. Using carefully selected fossils that are of known age and affinity, the mutation rate of the DNA sequences was calculated, allowing these scientists to provide age estimates for evolutionary events in the family. “Our results show that ancestors of some of the modern Proteaceae must have crossed the Atlantic and Indian Oceans. Thus, in Africa, for example, the spectacular genus Protea is truly Gondwanan, but 250 species from other genera that occur in the ‘fynbos’ vegetation (literally, ‘fine leaved shrubs’) of the highly diverse south-western Cape biodiversity hotspot are much younger, and have Australian relatives” says Nigel Barker of Rhodes University, South Africa.

This new finding is important, as it challenges the dogma that gondwanaland’s biota merely moved in situ with the continents as they broke up. “We have to reconsider the possibility of transoceanic dispersal, as unlikely as it sounds for these plants” says Peter Weston, a researcher at the Royal Botanic Gardens, Sydney, Australia. While this is not the first study to invoke dispersal, it is the first on a major and diverse Gondwanan plant family with complex distribution patterns. These results are not only relevant to botanists. Ornithologists will be intrigued to find that the age of the Embothriinae, a bird-pollinated group of Proteaceae in Australia, coincides with the estimated age of the Honey-eaters, Australian nectar-feeding birds.

... more about:
»DNA »DNA sequence »Proteaceae »continents

Nigel Barker, the first author of the work enthuses “this study is the culmination of 11 years of work. I generated much of the data while working with Peter Weston at the Royal Botanic Gardens in Sydney in 1996. It was only when I met up with Frank Rutschmann in Zurich, who had the expertise on molecular dating, and Hervé Sauquet, a postdoc at the Royal Botanic Gardens, Kew, United Kingdom with an extensive knowledge of the fossil record of the Proteaceae, that it became possible to undertake this rigorous analysis. Sometimes science is about getting the right people with the right skills together in order to make advances”.

Samantha Holford | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2699.2007.01749.x

Further reports about: DNA DNA sequence Proteaceae continents

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>