Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequences and fossils show that the Proteaceae, a major group of Gondwanaland’s plants, spread by ...

09.08.2007
continental drift and transoceanic dispersal to modern continents

Using DNA sequence data, botanists have shown that the large southern hemisphere plant family Proteaceae lived on the super-continent Gondwanaland almost 120 million years ago. As Gondwanaland broke up, it was originally thought that these plants merely moved with the newly formed continents. But now a new study published in the Journal of Biogeography has shown that, while this is the case for some of these plants, others are far too recent to have lived at the time when the super-continent broke up. They must therefore have dispersed across oceans to reach their current distribution ranges.

Barker et al. apply a technique known as molecular dating to DNA sequences from over 40 representatives of the family from all southern continents. Using carefully selected fossils that are of known age and affinity, the mutation rate of the DNA sequences was calculated, allowing these scientists to provide age estimates for evolutionary events in the family. “Our results show that ancestors of some of the modern Proteaceae must have crossed the Atlantic and Indian Oceans. Thus, in Africa, for example, the spectacular genus Protea is truly Gondwanan, but 250 species from other genera that occur in the ‘fynbos’ vegetation (literally, ‘fine leaved shrubs’) of the highly diverse south-western Cape biodiversity hotspot are much younger, and have Australian relatives” says Nigel Barker of Rhodes University, South Africa.

This new finding is important, as it challenges the dogma that gondwanaland’s biota merely moved in situ with the continents as they broke up. “We have to reconsider the possibility of transoceanic dispersal, as unlikely as it sounds for these plants” says Peter Weston, a researcher at the Royal Botanic Gardens, Sydney, Australia. While this is not the first study to invoke dispersal, it is the first on a major and diverse Gondwanan plant family with complex distribution patterns. These results are not only relevant to botanists. Ornithologists will be intrigued to find that the age of the Embothriinae, a bird-pollinated group of Proteaceae in Australia, coincides with the estimated age of the Honey-eaters, Australian nectar-feeding birds.

... more about:
»DNA »DNA sequence »Proteaceae »continents

Nigel Barker, the first author of the work enthuses “this study is the culmination of 11 years of work. I generated much of the data while working with Peter Weston at the Royal Botanic Gardens in Sydney in 1996. It was only when I met up with Frank Rutschmann in Zurich, who had the expertise on molecular dating, and Hervé Sauquet, a postdoc at the Royal Botanic Gardens, Kew, United Kingdom with an extensive knowledge of the fossil record of the Proteaceae, that it became possible to undertake this rigorous analysis. Sometimes science is about getting the right people with the right skills together in order to make advances”.

Samantha Holford | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2699.2007.01749.x

Further reports about: DNA DNA sequence Proteaceae continents

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>