Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a first, Einstein scientists discover the dynamics of transcription in living mammalian cells

08.08.2007
Transcription — the transfer of DNA’s genetic information through the synthesis of complementary molecules of messenger RNA — forms the basis of all cellular activities.

Yet little is known about the dynamics of the process — how efficient it is or how long it takes. Now, researchers at the Albert Einstein College of Medicine of Yeshiva University have measured the stages of transcription in real time. Their unexpected and surprising findings have fundamentally changed the way transcription is understood.

The researchers used pioneering microscopy techniques developed by Dr. Robert Singer, co-chair of anatomy & structural biology at Einstein and senior author of the study, which appears in the August issue of Nature Structural & Molecular Biology.

The study focused on RNA polymerase II--the enzyme responsible for transcription. During transcription, growing numbers of RNA polymerase II molecules assemble on DNA and then synthesize RNA by sequentially recruiting complementary RNA nucleotides.

... more about:
»Polymerase »RNA »elongation »enzyme »transcription

To visualize the transcription process, the researchers used living mammalian cells, each of which contained 200 copies of an artificial gene that they had inserted into one of the cell’s chromosomes. Then, by attaching fluorescent tags to RNA polymerase II, they were able to closely monitor all three phases of the transcription process: binding of the enzyme molecules to DNA, initiation (when the enzyme links the first few RNA nucleotides together) and elongation (construction of the rest of the RNA molecule). As they observed the RNA polymerase II molecules attaching to DNA and making new RNA, they saw many cases where enzyme molecules attached — and then promptly fell off.

“One surprising finding was how inefficient the transcription process really is, particularly during its first two stages,” says Dr. Singer. “It turns out that only one percent of polymerases that bind to the gene actually remain on to help in synthesizing an RNA molecule. Transcription is probably inefficient for a reason. We’re not sure why, but it may be because all the factors needed for transcription have to come together at the right time and the right place, so there’s a lot of falling off and adding on of polymerases until everything is precisely coordinated.”

The researchers observed that the binding phase of transcription lasted six seconds and initiation lasted 54 seconds. By contrast, the final stage of transcription — elongation of the RNA molecule — took a lengthy 517 seconds (about eight minutes). The possible reason: The “lead” polymerase on the growing polymerase II enzyme sometimes “paused” for long periods, retarding transcription in the same way that a Sunday driver on a narrow road slows down all traffic behind him. But in the absence of pausing, elongation proceeded much faster — about 70 nucleotides synthesized per second — than has previously been reported.

These two phenomena — pausing and rapid RNA synthesis during elongation — may be crucial for regulating gene expression. “With this sort of mechanism, you could have everything at the ready in case you suddenly needed to rev up transcription,” says Dr. Singer. “Once the ‘paused’ polymerase starts up again, in a very short time you could synthesize a new batch of messenger RNA molecules that might suddenly be needed for making large amounts of a particular protein.”

The other Einstein researchers involved in the study were lead author, Xavier Darzacq (now at Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, Paris), Yaron Shav-Tal (now at The Mina & Everard Goodman Facility of Life Sciences, Bar-Ilan University, Ramat Gan, Israel), Valeria de Turris and Shailesh M. Shenoy. Other collaborators were Yehuda Brody of Bar-Ilan University and Robert D. Phair of Integrative Bioinformatics, Inc., Los Altos, CA.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu/home/

Further reports about: Polymerase RNA elongation enzyme transcription

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>