Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diverse Viruses Show Signs of Common Ancestry


The viruses that cause diseases as varied as AIDS, hepatitis and West Nile Virus may actually have more in common than was previously thought, new research reveals. According to a study that will appear in the March issue of the journal Molecular Cell, three major groups of viruses use similar mechanisms to replicate their genetic information after they have infiltrated the cells of a host.

There are six broad classes of viruses, each thought to represent a major evolutionary lineage. Michael Schwartz, Jianbo Chen and colleagues at the University of Wisconsin, Madison studied the viral replication process and found that key features of the procedure run parallel in three of the six groups. Positive-strand RNA viruses, reverse transcribing viruses and double-stranded RNA viruses, they report, use similar basic mechanisms to replicate, despite differences in how the viruses move between host cells. The scientists determined that the three groups, which together comprise more than half of the world’s known virus families, all replicate their genome using messenger RNA and generate spherules to sequester them within newly infected cells. "This new virus-induced compartment, in which the virus genome is reserved and copied, shows surprising similarities across these different virus groups," notes study co-author Paul Ahlquist of the Howard Hughes Medical Institute at the University of Wisconsin, Madison.

Such fundamental similarities in replication among the viruses suggest they may have common evolutionary origins, the authors write. "These results have added considerably to our understanding of these viruses, and any new basic knowledge is useful in control," Ahlquist says. "If you know the machinery, you know where to throw the wrench to mess it up."

Sarah Graham | alphagalileo

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>