Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of new pancreatic blood vessels can determine malignancy

07.08.2007
Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have shown how the formation of new blood vessels (angiogenesis) is regulated by a network of hundreds of genes. The transition from healthy pancreatic tissue to pancreatic cancer is characterized by increased activity of angiogenesis-promoting genes.

Microscopically small, newly formed tumors may rest in dormant state for months or even years without forming their own blood vessels. It takes a kind of cellular switch to activate genes that are required for the sprouting of new blood vessels. New vessel formation is often accompanied by rapid, invasive tumor growth and metastasis. Drugs directed against key molecules of angiogenesis are already successfully used today to prolong survival of many cancer patients.

Dr. Dr. Amir Abdollahi and Professor Dr. Dr. Peter Huber at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), collaborating with Heidelberg University and US researchers, have investigated what happens at the molecular level when the angiogenetic switch is operated. The investigators studied the genetic response of blood vessel cells (endothelial cells) to known angiogenesis-promoting factors as well as angiogenesis inhibitors. In the “proangiogenetic” state, angiogenesis-promoting genes are switched on, while antiangiogenetic genes are switched off. The organism responds by sprouting new blood vessels. When the gene network is in “antiangiogenetic” state, the reverse is the case, i.e. the formation of blood vessels is prevented.

Measurements of gene activity in tissues samples of patients with diseases of the pancreas have shown the clinical relevance of these findings. From normal pancreatic tissue via chronic pancreatitis through to pancreatic cancer the researchers found a steady increase in the activity of those genes that had been identified in the cell experiment as angiogenesis-promoting. This trend was studied in more detail on a gene called PPARd, whose role in tumor development and angiogenesis had not been known before. The scientists were able to show that the level of PPARd protein steadily increases from normal tissue via pancreatitis tissue through to metastasizing pancreatic cancer. Other tumors, such as breast cancer and prostate cancer, were also found to produce increased levels of the angiogenesis-promoting protein.

In order to study the protein’s actual role in tumor vessel formation, the investigators transplanted skin and lung cancer cells into genetically engineered mice that do not produce their own PPARd. Compared to normal animals, tumor growth in the genetically engineered mice was signifantly slower with poorer supply of vessels.

However, PPARd is only one of many key switches within the angiogenetic network. “Regulation of angiogenesis seems to be more complex than previously assumed,“ says project leader Peter Huber. “Therefore we think that in cancer treatment it is not sufficient to inhibit only one of the participants. Antiangiogenetic therapy might be improved by targeting several of the network’s key switches. One of these could be PPARd.”

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:
http://www.dkfz.de

Further reports about: Angiogenesis PPARd angiogenesis-promoting blood vessel pancreatic vessel

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>