Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of new pancreatic blood vessels can determine malignancy

07.08.2007
Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have shown how the formation of new blood vessels (angiogenesis) is regulated by a network of hundreds of genes. The transition from healthy pancreatic tissue to pancreatic cancer is characterized by increased activity of angiogenesis-promoting genes.

Microscopically small, newly formed tumors may rest in dormant state for months or even years without forming their own blood vessels. It takes a kind of cellular switch to activate genes that are required for the sprouting of new blood vessels. New vessel formation is often accompanied by rapid, invasive tumor growth and metastasis. Drugs directed against key molecules of angiogenesis are already successfully used today to prolong survival of many cancer patients.

Dr. Dr. Amir Abdollahi and Professor Dr. Dr. Peter Huber at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), collaborating with Heidelberg University and US researchers, have investigated what happens at the molecular level when the angiogenetic switch is operated. The investigators studied the genetic response of blood vessel cells (endothelial cells) to known angiogenesis-promoting factors as well as angiogenesis inhibitors. In the “proangiogenetic” state, angiogenesis-promoting genes are switched on, while antiangiogenetic genes are switched off. The organism responds by sprouting new blood vessels. When the gene network is in “antiangiogenetic” state, the reverse is the case, i.e. the formation of blood vessels is prevented.

Measurements of gene activity in tissues samples of patients with diseases of the pancreas have shown the clinical relevance of these findings. From normal pancreatic tissue via chronic pancreatitis through to pancreatic cancer the researchers found a steady increase in the activity of those genes that had been identified in the cell experiment as angiogenesis-promoting. This trend was studied in more detail on a gene called PPARd, whose role in tumor development and angiogenesis had not been known before. The scientists were able to show that the level of PPARd protein steadily increases from normal tissue via pancreatitis tissue through to metastasizing pancreatic cancer. Other tumors, such as breast cancer and prostate cancer, were also found to produce increased levels of the angiogenesis-promoting protein.

In order to study the protein’s actual role in tumor vessel formation, the investigators transplanted skin and lung cancer cells into genetically engineered mice that do not produce their own PPARd. Compared to normal animals, tumor growth in the genetically engineered mice was signifantly slower with poorer supply of vessels.

However, PPARd is only one of many key switches within the angiogenetic network. “Regulation of angiogenesis seems to be more complex than previously assumed,“ says project leader Peter Huber. “Therefore we think that in cancer treatment it is not sufficient to inhibit only one of the participants. Antiangiogenetic therapy might be improved by targeting several of the network’s key switches. One of these could be PPARd.”

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:
http://www.dkfz.de

Further reports about: Angiogenesis PPARd angiogenesis-promoting blood vessel pancreatic vessel

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>