Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of new pancreatic blood vessels can determine malignancy

07.08.2007
Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have shown how the formation of new blood vessels (angiogenesis) is regulated by a network of hundreds of genes. The transition from healthy pancreatic tissue to pancreatic cancer is characterized by increased activity of angiogenesis-promoting genes.

Microscopically small, newly formed tumors may rest in dormant state for months or even years without forming their own blood vessels. It takes a kind of cellular switch to activate genes that are required for the sprouting of new blood vessels. New vessel formation is often accompanied by rapid, invasive tumor growth and metastasis. Drugs directed against key molecules of angiogenesis are already successfully used today to prolong survival of many cancer patients.

Dr. Dr. Amir Abdollahi and Professor Dr. Dr. Peter Huber at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), collaborating with Heidelberg University and US researchers, have investigated what happens at the molecular level when the angiogenetic switch is operated. The investigators studied the genetic response of blood vessel cells (endothelial cells) to known angiogenesis-promoting factors as well as angiogenesis inhibitors. In the “proangiogenetic” state, angiogenesis-promoting genes are switched on, while antiangiogenetic genes are switched off. The organism responds by sprouting new blood vessels. When the gene network is in “antiangiogenetic” state, the reverse is the case, i.e. the formation of blood vessels is prevented.

Measurements of gene activity in tissues samples of patients with diseases of the pancreas have shown the clinical relevance of these findings. From normal pancreatic tissue via chronic pancreatitis through to pancreatic cancer the researchers found a steady increase in the activity of those genes that had been identified in the cell experiment as angiogenesis-promoting. This trend was studied in more detail on a gene called PPARd, whose role in tumor development and angiogenesis had not been known before. The scientists were able to show that the level of PPARd protein steadily increases from normal tissue via pancreatitis tissue through to metastasizing pancreatic cancer. Other tumors, such as breast cancer and prostate cancer, were also found to produce increased levels of the angiogenesis-promoting protein.

In order to study the protein’s actual role in tumor vessel formation, the investigators transplanted skin and lung cancer cells into genetically engineered mice that do not produce their own PPARd. Compared to normal animals, tumor growth in the genetically engineered mice was signifantly slower with poorer supply of vessels.

However, PPARd is only one of many key switches within the angiogenetic network. “Regulation of angiogenesis seems to be more complex than previously assumed,“ says project leader Peter Huber. “Therefore we think that in cancer treatment it is not sufficient to inhibit only one of the participants. Antiangiogenetic therapy might be improved by targeting several of the network’s key switches. One of these could be PPARd.”

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:
http://www.dkfz.de

Further reports about: Angiogenesis PPARd angiogenesis-promoting blood vessel pancreatic vessel

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>