Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why nectar-feeding bats need a “power drink” to fly

06.08.2007
Nectar-feeding bats burn sugar faster than any other mammal on Earth – and three times faster than even top-class athletes – ecologists have discovered.

The findings, published online in the British Ecological Society's journal Functional Ecology, illustrate that because they live life on an energetic knife edge, these bats are very vulnerable to any changes in their environment that interrupt their fuel supply for even a short period.

Working with a captive breeding colony in Germany, Dr Christian Voigt of the Leibniz Institute for Zoo and Wildlife Research in Berlin and Professor John Speakman of the University of Aberdeen fed long-tongued bats (Glossophaga soricina) sugar labelled with non-radioactive carbon-13 and then measured the amount of carbon-13 in the bats’ exhaled breath.

“We found that nectar-feeding bats made use of the sugar they were drinking for their metabolism within minutes after drinking it, and after less than half an hour they were fuelling 100% their metabolism from this source. For comparison, the highest rates reported in humans are for athletes who can fuel up to 30% of their metabolism directly from power drinks,” they say.

The reason these bats live on such an energetic knife edge is down to the food source they live on and the way they get around. They feed on floral nectars that contain simple sugars such as sucrose, glucose and fructose, but which are produced in only very small amounts by flowering plants. These sugars are rapidly absorbed and digested, and by metabolising them directly – rather than converting them to fat or glycogen and then using them up later – the bats get the maximum energy they can from the sugars. This is important because they hover like humming birds, and this kind of flight uses up a great deal of energy.

According to Voigt and Speakman: “All animals need energy to power their metabolism. Ultimately this energy comes from food, but usually only a small fraction of the energy being used comes directly from the food. Normally, most of the food is converted into storage and this is drawn on later to fuel metabolism. Small nectar-feeding bats have among the highest metabolic costs among mammals, and mostly eat a diet low in fat and protein but rich in sugars. Metabolising these sugars immediately they are consumed saves the costs of converting them to and from storage.”

In a second experiment, Voigt and Speakman measured how fast the bats used their meagre fat stores. “We found the bats depleted almost 60% of their fat stores each day, but even this phenomenal rate was still barely enough to sustain their metabolism when nectar was absent. This underlines how accurately these bats must balance their energy requirements every day and how vulnerable they are to ecological perturbations that might interrupt their fuel supply for even a short period,” they say.

Nectar-feeding bats live in south and central America and are among the smallest of all living mammals, weighing less than 10g. They feed at night and can ingest up to 150% of their body weight as nectar.

C C Voigt and J R Speakman (2007). Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Functional Ecology, doi: 10.1111/j.1365-2435.2007.01321.x is published online on 6 August 2007.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org
http://www.blackwellpublishing.com/fec

Further reports about: HDL-cholesterol Speakman metabolism nectar-feeding

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>