Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why nectar-feeding bats need a “power drink” to fly

06.08.2007
Nectar-feeding bats burn sugar faster than any other mammal on Earth – and three times faster than even top-class athletes – ecologists have discovered.

The findings, published online in the British Ecological Society's journal Functional Ecology, illustrate that because they live life on an energetic knife edge, these bats are very vulnerable to any changes in their environment that interrupt their fuel supply for even a short period.

Working with a captive breeding colony in Germany, Dr Christian Voigt of the Leibniz Institute for Zoo and Wildlife Research in Berlin and Professor John Speakman of the University of Aberdeen fed long-tongued bats (Glossophaga soricina) sugar labelled with non-radioactive carbon-13 and then measured the amount of carbon-13 in the bats’ exhaled breath.

“We found that nectar-feeding bats made use of the sugar they were drinking for their metabolism within minutes after drinking it, and after less than half an hour they were fuelling 100% their metabolism from this source. For comparison, the highest rates reported in humans are for athletes who can fuel up to 30% of their metabolism directly from power drinks,” they say.

The reason these bats live on such an energetic knife edge is down to the food source they live on and the way they get around. They feed on floral nectars that contain simple sugars such as sucrose, glucose and fructose, but which are produced in only very small amounts by flowering plants. These sugars are rapidly absorbed and digested, and by metabolising them directly – rather than converting them to fat or glycogen and then using them up later – the bats get the maximum energy they can from the sugars. This is important because they hover like humming birds, and this kind of flight uses up a great deal of energy.

According to Voigt and Speakman: “All animals need energy to power their metabolism. Ultimately this energy comes from food, but usually only a small fraction of the energy being used comes directly from the food. Normally, most of the food is converted into storage and this is drawn on later to fuel metabolism. Small nectar-feeding bats have among the highest metabolic costs among mammals, and mostly eat a diet low in fat and protein but rich in sugars. Metabolising these sugars immediately they are consumed saves the costs of converting them to and from storage.”

In a second experiment, Voigt and Speakman measured how fast the bats used their meagre fat stores. “We found the bats depleted almost 60% of their fat stores each day, but even this phenomenal rate was still barely enough to sustain their metabolism when nectar was absent. This underlines how accurately these bats must balance their energy requirements every day and how vulnerable they are to ecological perturbations that might interrupt their fuel supply for even a short period,” they say.

Nectar-feeding bats live in south and central America and are among the smallest of all living mammals, weighing less than 10g. They feed at night and can ingest up to 150% of their body weight as nectar.

C C Voigt and J R Speakman (2007). Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Functional Ecology, doi: 10.1111/j.1365-2435.2007.01321.x is published online on 6 August 2007.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org
http://www.blackwellpublishing.com/fec

Further reports about: HDL-cholesterol Speakman metabolism nectar-feeding

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>