Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming the anthrax threat

03.08.2007
First complete analysis of genes active in the anthrax microbe as it invades the lungs should pave the way for better drugs in the event of an attack

In the American government’s biodefense efforts, the potential for terrorists to cause a deadly anthrax outbreak remains a significant concern, six years after the letter attacks that shook the nation shortly after 9/11.

Now, researchers at the University of Michigan Medical School have developed the first complete picture of how anthrax-causing bacteria survive and grow inside unwitting immune cells — their supposed attackers — during the crucial first moments of anthrax infection. They have also identified gene candidates to pursue as possible anthrax drug targets. They say the methods they used to detect the microbe’s activities should become important new tools for other researchers.

Ultimately, the goal in this and other related research is to discover more effective, more easily tolerated treatments than those available now if an anthrax attack occurs, says U-M scientist Nicholas H. Bergman, Ph.D., the lead author of the study, which appears in the July edition of Infection and Immunity. Drugs given to people within a day of exposure, before symptoms develop, can prevent illness and death.

... more about:
»Anthrax »Infection »Spore »U-M »identified »macrophage »microbe

In mouse studies using DNA microarray technology, the U-M scientists were able to track which genes and enzymes play key roles in the bacterium that causes anthrax, while it sneaks inside the immune system’s first-responder cells in the lungs, called macrophages, and begins to multiply. The work is a significant advance because it will make it much easier to identify precise new targets for better anthrax drugs and vaccines, says Bergman, a research assistant professor of Bioinformatics at the U-M Medical School.

In strategies to quell the anthrax microbe, timing is everything. During most of its life cycle, the organism has formidable defenses. These make it a challenge for scientists to find a prime moment when future drugs, without the digestive-tract side effects and other drawbacks of those used now, can effectively stop the bug in its tracks.

Bacillus anthracis can quickly transform from a dormant spore (the white powder sent to U.S. lawmakers and others in the mail in 2001) into an active, quickly-multiplying organism once it gets inside the warm lungs of a host. Bacillus anthracis can cause infection elsewhere in the body, but is most serious and potentially deadly when its spores are inhaled.

Bergman’s team focused on the mystifying step in anthrax infection when the bacteria pass unrecognized inside macrophages, the primary immune cells able to kill most bacteria.

“Somehow the bacterium avoids being killed and actually hijacks these phagocytes (microbe-killing cells),” Bergman says. New drugs, he says, should target the bug during the brief “window of vulnerability” when the bacteria transform from dormant spores into active, growing organisms. That chance exists for a few hours when the invaders are inside immune cells in the lung and then pass from the lungs to the lymph nodes.

Once the bacteria reach the bloodstream, they become unrecognizable to immune cells there. At this stage, they cause death from septicemia in essentially all people infected. Even with modern ICU support, the mortality rate for infections that progress to this stage is greater than 50 percent.

To understand what happens in the anthrax microbe as it activates inside the defender macrophages, Bergman’s team used DNA microarrays, a technology emerging in the last decade, to examine mouse macrophage cells infected with the attenuated version of the microbe. It is modified so that it cannot infect laboratory workers but remains infectious in mice and other animals. The form is also used in animal anthrax vaccines.

The scientists were able to profile all the significant genetic activities in the microbe at several points in time as it invaded the macrophage, germinated, killed its host, and then escaped to spread further. They identified several pathways and functions that helped the microbe survive and thrive, which could be targets for future drugs.

Among a large number of genes shown to be highly active, the scientists picked one to study further, a previously uncharacterized gene in the MarR family that possibly regulates transcription. When they infected mouse cells with a Bacillus anthracis strain altered to lack the gene, they found the bacteria were significantly less able to cause disease. The next step will be to screen compounds that could potentially block the action of this gene and other genes identified in the study.

A new generation of anthrax drugs is needed because antibiotics given now to people exposed to anthrax spores, though they work, cause serious gastrointestinal effects during the 60 days people need to take them. Many people do not complete the full course of treatment. An improved drug would knock out the anthrax microbe but leave the normal good bacteria in the gut alone. As a first step, U-M scientists plan to screen compounds to find ones able to block specific processes they have identified in the anthrax microbe.

Anne Rueter | EurekAlert!
Further information:
http://www.proteomicsresource.org
http://www.umich.edu

Further reports about: Anthrax Infection Spore U-M identified macrophage microbe

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>