Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Discover Pathway that Eliminates Genetic Defects in Red Blood Cells

03.08.2007
Implications for Treating Common Genetic Blood Disorder
> Researchers at the University of Pennsylvania School of Medicine have discovered a unique molecular pathway that detects and selectively eliminates defective messenger RNAs from red blood cells.

> Knowing how this specific surveillance system works can help researchers better understand hereditary diseases, in this case, thalassemia, a form of anemia, which is the most common genetic disorder worldwide.

> The results appear in the most recent issue of Nature Structural and Molecular Biology.

Researchers at the University of Pennsylvania School of Medicine have discovered a unique molecular pathway that detects and selectively eliminates defective messenger RNAs from red blood cells. Other such pathways – known as surveillance pathways – operate in a more general way, in many cell types. Knowing how this specific surveillance system works can help researchers better understand hereditary diseases, in this case, thalassemia, a form of anemia, which is the most common genetic disorder worldwide.

... more about:
»Genetic »Mutation »RNA »blood flow »specific »surveillance

The results appear in the most recent issue of Nature Structural and Molecular Biology.

Cells have developed surveillance mechanisms that identify and destroy abnormal RNAs. Mistakes in a cell’s reading of RNA into protein can lead to the production of an abnormal protein, and this can result in abnormal cell function or death.

The form of thalassemia studied by the Penn group is caused by a mutation that allows the cell’s ribosome to read too far, making a protein that is too long. Thalassemias result from an underproduction of hemoglobin proteins – the oxygen carrying molecule in blood – hence the anemia. The particular mutation they study is carried by millions of people in Southeast Asia and is a major a cause of fetal loss and disease in adults. Specifically in this study they show how far the ribosome has to read into the RNA to trigger mRNA destabilization.

Several surveillance pathways have been identified over the last few years that recognize specific types of mutations in RNAs. For example, the most well-described pathway is one that recognizes nonsense mutations that result in an RNA that makes a protein that is too short. Duchenne's muscular dystrophy and cystic fibrosis are examples of hereditary diseases that result from nonsense mutations.

“We describe a surveillance pathway that targets RNA that is only found in red blood cells,” says senior author Stephen A. Liebhaber, MD, Professor of Genetics and Medicine. “More general surveillance pathways are in all cells. The specificity of this particular surveillance pathway has not been previously observed and predicts that there’s something quite unusual about how RNAs are handled in red blood cells. We’re interested in how this specific surveillance system works in red blood cells because such understanding will increase our knowledge of how these cells make high levels of hemoglobin and how defects in this system could contribute to genetic disorders and possibly be reversed.”

“This type of surveillance pathway that is regulated at the tissue level could also exist in other highly specialized cells,” says first author Jian Kong, PhD, Senior Research Investigator. “Investigating the mechanism of this pathway may help in understanding a wider range of genetic disorders.”

Liebhaber is looking forward to further analysis of this surveillance pathway in order to determine why it is specific to red cells and to define the corresponding steps in gene expression in the red cell that are so unusual. Such information should lead to new ideas on how to manipulate this system in a variety of blood diseases.

The research was funded by the National Heart, Lung, and Blood Disease Institute.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Genetic Mutation RNA blood flow specific surveillance

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>