Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Altering a protein makes mice less fearful

A University of Iowa study shows that loss or chemical inhibition of a protein, known as acid sensing ion channel protein (ASIC1a), reduces innate fear behavior in lab animals, making normally timid mice relatively fearless. The findings might provide useful insight into anxiety disorders and may even point the way to a new therapeutic target.

For humans and other animals, some fears seem to be, in large part, instinctive and inborn rather than learned. For example, laboratory animals fear certain predators even though they have never been exposed to a predator. However, little is known about the brain mechanisms involved in innate fear responses.

The UI study, published in the scientific journal, Biological Psychiatry, and available online July 30, shows that disrupting the ASIC1a protein alters innate fear reactions in mice and suggests that this protein may be a critical component of the brain systems that underlie innate fear.

The UI team, led by John Wemmie, M.D., Ph.D., assistant professor of psychiatry in the Roy J. and Lucille A. Carver College of Medicine, focused on ASIC1a because earlier research from the lab had shown that the protein was important in learned fear.

... more about:
»ASIC1a »Channel »Ion »Predator »Wemmie »anxiety »innate

The new study examined the protein's role in innate fear by disrupting ASIC1a in mice and observing the effect on several well-studied innate fear behaviors.

Mice that lack the protein were significantly less fearful of open spaces, loud noises and predator odor than normal mice.

In the odor test, the researchers placed a beaker containing a fox-odor chemical in the mouse enclosure. Normal mice froze when they smelled the chemical and avoided the beaker. In contrast, mice lacking the ASIC1a protein showed a much-reduced freezing response and even climbed onto the beaker. The team showed that the loss of ASIC1a did not affect the mouse's sense of smell.

"These lab animals have never been exposed to a predator. The freezing response seems hardwired and intuitive," said Matthew Coryell, a UI graduate student in the Neurosciences Program and lead author of the study. "Disrupting the gene reduced unconditioned, innate fear in the mice."

In a second set of experiments, the team also showed that chemically inhibiting the ASIC1a protein in normal mice (using a component of tarantula venom) similarly blunted the innate fear response.

"Showing that pharmacologically blocking the channel reduces innate fear behavior, in theory, sets the stage for investigating whether therapies that block these ion channels in humans might be effective in anxiety disorders," said Wemmie, who also is a physician and researcher at the Veterans Affairs (VA) Iowa City Health Care System.

The UI team found that ASIC1a is concentrated in brain regions that are critical for fear behaviors and responses, including the amygdala and an area called the bed nucleus of the stria terminalis (BNST), which is thought to be particularly important for innate fear behaviors. The study also shows that mice without ASIC1a have altered neuronal activity in these fear circuit structures.

The researchers speculate that because the gene is localized to brain regions involved in fear, targeting the ASIC1a protein might have a more focused effect on anxiety with fewer side effects than existing treatments, which affect systems throughout the brain, not just those involved in the fear response.

"Current treatments for anxiety have problems such as risk of addiction, slow onset of action and other types of side effects that make people not want to take them," Wemmie explained. "If we could find something that was more specific, or even had a different set of side effects, that could be an advantage."

Although this study examined the effect of disrupting the ion channel in mice, the mouse gene is very similar to the human gene, and the ASIC1a is present in human brains, where it is found in the amygdala.

There are no known mutations of the ASIC1a gene linked to altered fearfulness, but the UI study raises the possibility that mutations or variations in the gene might be associated with heritability of, or predisposition for, neuroticisim, phobias and other anxiety traits in humans.

The UI team plans to determine the specific sites of action of ASIC1a in the brain, and focus on understanding the role of the ion channel in the amygdala. They also are interested in whether the protein is involved in other types of psychiatric illness.

"Anxiety and other psychiatric illnesses, such as depression, are closely related. Some anxiety treatments often are effective for depression and vice versa," Wemmie said. "This study raises that possibility that blocking this protein might be useful for depression as well as anxiety."

Jennifer Brown | EurekAlert!
Further information:

Further reports about: ASIC1a Channel Ion Predator Wemmie anxiety innate

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>