Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists gain new understanding of adult stem cell regulation

02.08.2007
Animal model shows new control point required for regeneration and homeostasis

Forsyth Institute scientists have discovered an important mechanism for controlling the behavior of adult stem cells.

Research with the flatworm, planaria, found a novel role for the proteins involved in cell-to-cell communication. This work has the potential to help scientists understand the nature of the messages that control stem cell regulation ¯ such as the message that maintain and tells a stem cell to specialize and to become part of an organ e.g.: liver or skin.

In recent years, planarians have been recognized as a great model system to molecularly dissect conserved stem cell regulatory mechanisms in vivo. Planarians have powerful regeneration capability that makes them ideal for studying this process. The Forsyth team uses planarians and other animal models to study development and regeneration.

The Forsyth team will publish this research in the August 16 issue of Development. According to the paper’s lead author, Néstor J. Oviedo, a postdoctoral fellow in the Forsyth Center for Regenerative and Developmental Biology, this work, highlighting the importance of direct cell-cell transfer of small molecules between stem cells and their neighbors, provides an important roadmap for learning about regeneration. “These findings suggest that similar mechanisms may be extraordinarily relevant for controlling the behavior of migratory, plastic cells. Further analysis in both planarians and in vertebrates will provide crucial opportunities for understanding what drives stem cell behavior and may help medical science identify novel therapeutic targets.”

The Forsyth team previously found that communication through gap-junctions (microscopic tunnels directly linking neighboring cells) controls the left-right asymmetric positioning of the internal organs during embryonic development. In this study, they turned to the role of gap junctional signals as regulators of adult stem cells in repair of injury.

Drs. Oviedo and Levin focused on direct cell-cell transfer of small molecules and ions as crucial signals that determine behavior of adult stem cells in vivo. They showed that when one of many specific gap junction channel types was abolished, the adult stem cell pool disappeared along with the regenerative capabilities, suggesting that gap junction-permeable signals are necessary to maintain stem cell state and tissue regeneration. This research demonstrates a novel role for gap-junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic cell regulation

Most recent work in the stem cell field has focused on the secreted protein factors that control embryonic stem cell differentiation. However, no specific gap junction protein had been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. This work demonstrates that gap junction channels providing direct cell-to-cell communication are a critical component for development and normal physiology.

Jennifer Kelly | EurekAlert!
Further information:
http://www.nigms.nih.gov/

Further reports about: Control Regeneration junction mechanism scientists

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>