Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists gain new understanding of adult stem cell regulation

02.08.2007
Animal model shows new control point required for regeneration and homeostasis

Forsyth Institute scientists have discovered an important mechanism for controlling the behavior of adult stem cells.

Research with the flatworm, planaria, found a novel role for the proteins involved in cell-to-cell communication. This work has the potential to help scientists understand the nature of the messages that control stem cell regulation ¯ such as the message that maintain and tells a stem cell to specialize and to become part of an organ e.g.: liver or skin.

In recent years, planarians have been recognized as a great model system to molecularly dissect conserved stem cell regulatory mechanisms in vivo. Planarians have powerful regeneration capability that makes them ideal for studying this process. The Forsyth team uses planarians and other animal models to study development and regeneration.

The Forsyth team will publish this research in the August 16 issue of Development. According to the paper’s lead author, Néstor J. Oviedo, a postdoctoral fellow in the Forsyth Center for Regenerative and Developmental Biology, this work, highlighting the importance of direct cell-cell transfer of small molecules between stem cells and their neighbors, provides an important roadmap for learning about regeneration. “These findings suggest that similar mechanisms may be extraordinarily relevant for controlling the behavior of migratory, plastic cells. Further analysis in both planarians and in vertebrates will provide crucial opportunities for understanding what drives stem cell behavior and may help medical science identify novel therapeutic targets.”

The Forsyth team previously found that communication through gap-junctions (microscopic tunnels directly linking neighboring cells) controls the left-right asymmetric positioning of the internal organs during embryonic development. In this study, they turned to the role of gap junctional signals as regulators of adult stem cells in repair of injury.

Drs. Oviedo and Levin focused on direct cell-cell transfer of small molecules and ions as crucial signals that determine behavior of adult stem cells in vivo. They showed that when one of many specific gap junction channel types was abolished, the adult stem cell pool disappeared along with the regenerative capabilities, suggesting that gap junction-permeable signals are necessary to maintain stem cell state and tissue regeneration. This research demonstrates a novel role for gap-junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic cell regulation

Most recent work in the stem cell field has focused on the secreted protein factors that control embryonic stem cell differentiation. However, no specific gap junction protein had been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. This work demonstrates that gap junction channels providing direct cell-to-cell communication are a critical component for development and normal physiology.

Jennifer Kelly | EurekAlert!
Further information:
http://www.nigms.nih.gov/

Further reports about: Control Regeneration junction mechanism scientists

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>