Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circumstellar space: Where chemistry happens for the very first time

02.08.2007
Cool place, hot bodies

Picture a cool place, teeming with a multitude of hot bodies twirling about in rapidly changing formations of singles and couples, partners and groups, constantly dissolving and reforming.

If you were thinking of the dance floor in a modern nightclub, think again.

It's a description of the shells around dying stars, the place where newly formed elements make compounds and life takes off, said Katharina Lodders, Ph.D., research associate professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis.

Chemistry for the very first time

"The circumstellar environment is where chemistry happens for the very first time," said Lodders. "It's the first place a newly synthesized element can do chemistry. It's a supermarket of things from dust to gas and dust grains to molecules and atoms. The circumstellar shells enable a chemistry that produced grains older than our sun itself. It's generated some popular interest, and this year marks the 20th anniversary of the presolar grain discoveries."

After the discovery of presolar diamonds in a meteorite in 1987 — the first stardust found in a meteorite — researchers at Washington University in St. Louis have been prominent in finding and analyzing pre-solar grains made of silicon carbide, diamonds, corundum, spinel, and silicates. The latest discovery — a silicate grain that formed around a foreign star and became incorporated into a comet in our solar system — was captured and returned by the STARDUST space mission in 2006.

Lodders said that nucleosynthesis — the creation of atoms — takes place in a star's interior, made of a plasma far too hot for any molecular chemistry to take place. The event that enables chemistry is the death of a star, when elements are spewed out of the core, creating a shell around the star. As this circumstellar shell cools, the elements react to form gas molecules and solid compounds.

A star comes of age

Our sun and other dwarf stars of less than about ten solar masses burn hydrogen into helium in their cores. As they come of age, they become Red Giant stars and burn the helium to carbon and oxygen. But many heavy elements such as strontium and barium, even heavier than iron, are also produced, albeit in much smaller quantities than carbon. At the same time, the star begins to eject its outer layers into the interstellar medium by stellar winds, building up a circumstellar shell. So eventually, most of a star's mass, including the newly produced elements, is ejected into the interstellar medium through the circumstellar shell. Most interstellar grains come from such stars.

Heavyweight stars go out more spectacularly, in violent supernovae such as SN2006gy, first observed late last year, which has turned out to be the most massive supernova ever witnessed. But no matter what, all stars like the sun and heavier ones like SN2006gy empty their elements into their circumstellar environments, where gaseous compounds and grains can form. From there, the gas and grains enter the interstellar medium and provide the material for new stars and solar systems to be born.

Lodders presented a paper on circumstellar chemistry and presolar grains at the 233rd American Chemical Society National Meeting, held March 25-29 in Chicago, where a special symposium was held to track the evolution of the elements across space and time. A book of proceedings is being prepared for publication.

Lodders said that just one percent of all known presolar grains come from supernovas. She said that several million stars have been catalogued and several thousand individual presolar grains have now been analyzed.

"Back in the 1960s, astronomers didn't know that presolar grains existed in meteorites," Lodders said. "They were discovered when researchers were looking at meteorite samples and studying noble gases. They asked what is the mineral carrier of the noble gases."

By separating minerals from samples of meteorites, they eventually found the carriers of the noble gases — presolar diamonds, graphite and silicon carbide — and thus started the study of presolar grains 20 years ago.

"So the genuine, micron-size star dust survived despite the potential chemical and physical processing in the interstellar medium, during solar system formation, and in the meteorite's parent asteroid," she said. "Since the star dust preserved in meteorites must have been already present before the solar system and the meteorites formed, researchers call this star dust presolar grains."

"Laboratory astronomy of stardust has revealed much about stellar element and isotope production, and about gas and dust formation conditions in giant stars and supernovae."

Katharina Lodders | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Supernova circumstellar interstellar interstellar medium meteorite presolar

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>