Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circumstellar space: Where chemistry happens for the very first time

02.08.2007
Cool place, hot bodies

Picture a cool place, teeming with a multitude of hot bodies twirling about in rapidly changing formations of singles and couples, partners and groups, constantly dissolving and reforming.

If you were thinking of the dance floor in a modern nightclub, think again.

It's a description of the shells around dying stars, the place where newly formed elements make compounds and life takes off, said Katharina Lodders, Ph.D., research associate professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis.

Chemistry for the very first time

"The circumstellar environment is where chemistry happens for the very first time," said Lodders. "It's the first place a newly synthesized element can do chemistry. It's a supermarket of things from dust to gas and dust grains to molecules and atoms. The circumstellar shells enable a chemistry that produced grains older than our sun itself. It's generated some popular interest, and this year marks the 20th anniversary of the presolar grain discoveries."

After the discovery of presolar diamonds in a meteorite in 1987 — the first stardust found in a meteorite — researchers at Washington University in St. Louis have been prominent in finding and analyzing pre-solar grains made of silicon carbide, diamonds, corundum, spinel, and silicates. The latest discovery — a silicate grain that formed around a foreign star and became incorporated into a comet in our solar system — was captured and returned by the STARDUST space mission in 2006.

Lodders said that nucleosynthesis — the creation of atoms — takes place in a star's interior, made of a plasma far too hot for any molecular chemistry to take place. The event that enables chemistry is the death of a star, when elements are spewed out of the core, creating a shell around the star. As this circumstellar shell cools, the elements react to form gas molecules and solid compounds.

A star comes of age

Our sun and other dwarf stars of less than about ten solar masses burn hydrogen into helium in their cores. As they come of age, they become Red Giant stars and burn the helium to carbon and oxygen. But many heavy elements such as strontium and barium, even heavier than iron, are also produced, albeit in much smaller quantities than carbon. At the same time, the star begins to eject its outer layers into the interstellar medium by stellar winds, building up a circumstellar shell. So eventually, most of a star's mass, including the newly produced elements, is ejected into the interstellar medium through the circumstellar shell. Most interstellar grains come from such stars.

Heavyweight stars go out more spectacularly, in violent supernovae such as SN2006gy, first observed late last year, which has turned out to be the most massive supernova ever witnessed. But no matter what, all stars like the sun and heavier ones like SN2006gy empty their elements into their circumstellar environments, where gaseous compounds and grains can form. From there, the gas and grains enter the interstellar medium and provide the material for new stars and solar systems to be born.

Lodders presented a paper on circumstellar chemistry and presolar grains at the 233rd American Chemical Society National Meeting, held March 25-29 in Chicago, where a special symposium was held to track the evolution of the elements across space and time. A book of proceedings is being prepared for publication.

Lodders said that just one percent of all known presolar grains come from supernovas. She said that several million stars have been catalogued and several thousand individual presolar grains have now been analyzed.

"Back in the 1960s, astronomers didn't know that presolar grains existed in meteorites," Lodders said. "They were discovered when researchers were looking at meteorite samples and studying noble gases. They asked what is the mineral carrier of the noble gases."

By separating minerals from samples of meteorites, they eventually found the carriers of the noble gases — presolar diamonds, graphite and silicon carbide — and thus started the study of presolar grains 20 years ago.

"So the genuine, micron-size star dust survived despite the potential chemical and physical processing in the interstellar medium, during solar system formation, and in the meteorite's parent asteroid," she said. "Since the star dust preserved in meteorites must have been already present before the solar system and the meteorites formed, researchers call this star dust presolar grains."

"Laboratory astronomy of stardust has revealed much about stellar element and isotope production, and about gas and dust formation conditions in giant stars and supernovae."

Katharina Lodders | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Supernova circumstellar interstellar interstellar medium meteorite presolar

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>