Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Under magnetic force, nanoparticles may deliver gene therapy

02.08.2007
New delivery system might also carry drugs or cells to targeted sites

After binding DNA segments to tiny iron-containing spheres called nanoparticles, researchers have used magnetic fields to direct the nanoparticles into arterial muscle cells, where the DNA could have a therapeutic effect. Although the research, done in cell cultures, is in early stages, it may represent a new method for delivering gene therapy to benefit blood vessels damaged by arterial disease.

The nanoparticles are extremely small, ranging from 185 to 375 nanometers (a nanometer is one billionth of a meter, or a millionth of a millimeter). For comparison, red blood cells are ten to 100 times larger. The researchers were able to control the nanoparticle size by varying the amount or composition of solvents they used to form the nanoparticles.

The magnetically driven delivery system also may find broader use as a vehicle for delivering drugs, genes or cells to a target organ. “This is a novel delivery system, the first to use a biodegradable, magnetically driven polymer to achieve clinically relevant effects,” said study leader Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children’s Hospital of Philadelphia. “This system has the potential to be a powerful tool.”

The proof-of-principle study, performed on vascular cells in culture, appears in the August issue of the FASEB Journal, published by the Federation of American Societies for Experimental Biology.

Impregnated with iron oxide, the nanoparticles carry a surface coating of DNA bound to an organic compound called polyethylenimine (PEI). The PEI protected the DNA from being broken down by enzymes called endonucleases that were present in the cell cultures and which occur normally in the bloodstream.

The DNA was in the form of a plasmid, a circular molecule that here carried a gene that coded for a growth-inhibiting protein called adiponectin. By applying a magnetic field, the study team steered the particles into arterial smooth muscle cells. Inside each cell, the DNA separated from the particle, entered the cell nucleus, and produced enough adiponectin to significantly reduce the proliferation of new cells.

In a practical application, such nanoparticles could be magnetically directed into stents, the tiny, expandable metal scaffolds inserted into a patient’s partially blocked vessels to improve blood flow. Many stents eventually fail as cells grow on their surfaces and create new obstructions, so delivering anti-growth genes to stents could help keep blood flowing freely.

The materials composing the nanoparticles are biodegradable, so they break down into simpler, nontoxic chemicals that can be carried away in the blood. “Previous researchers had shown that magnetically driven nanoparticles could deliver DNA in cell cultures, but ours is the first delivery system that is biodegradable, and therefore, safer to use in people,” said Levy.

“This delivery system may be a useful tool for delivering nonviral gene therapy, because it efficiently binds and protects DNA in blood serum and delivers it to cells,” added Levy. As a nonviral method, it avoids the unwanted immune system responses that have occurred when viruses are used to deliver gene therapy.

Levy said his team would pursue further studies into the feasibility of using the nanoparticles for gene therapy in blood vessels damaged by vascular disease. He suggested that the nanoparticles might find broader application, such as delivering gene therapy to tumors, or carrying drugs instead of or in addition to genes. Another possibility is that after preloading genetically engineered cells with nanoparticles, researchers could use magnetic forces to direct the cells to a target organ.

Furthermore, researchers might deliver nanoparticles to magnetically responsive, removable stents in sites other than blood vessels, such as airways or parts of the gastrointestinal tract. “We could remove the stent after the nanoparticles have delivered a sufficient number of genes, cells or other agents to have a long-lasting benefit,” he added.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Magnetic Stent culture deliver magnetically nanoparticle

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>