Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles may pan out as tool for cancer diagnosis

02.08.2007
When it comes to searching out cancer cells, gold may turn out to be a precious metal.

Purdue University researchers have created gold nanoparticles that are capable of identifying marker proteins on breast cancer cells, making the tiny particles a potential tool to better diagnose and treat cancer. The technology would be about three times cheaper than the most common current method and has the potential to provide many times the quantity and quality of data, said Joseph Irudayaraj, an associate professor of agricultural and biological engineering.

"We hope that this technology will soon play a critical role in early detection and monitoring of breast cancer," said Irudayaraj (pronounced ee-roo-THY'-a-razh), leader of a research team that developed a new method for fabricating the nanoparticles that is published online this month in the journal Analytical Chemistry. "Our goal is to see it in commercial use in about four years."

The gold nanoparticles, or nanorods, are tiny rod-shaped gold particles, even smaller than viruses, which are equipped with antibodies designed to bind to a specific marker on cell surfaces. Researchers analyze these surface markers, proteins on a cell's exterior, because they can contain valuable information about what type of cell they belong to or what state that cell may be in.

"In cancer diagnosis, the ability to accurately detect certain key markers will be very helpful because certain types of cancers have specific surface markers," Irudayaraj said.

In another study published last month in Nano Letters, Irudayaraj showed that the nanorods, when combined with a special imaging technique, were capable of recognizing cancer stem cells by binding to known markers on their exterior. Cancer stem cells are important to detect because they are particularly invasive and more likely than other types of cancer cells to spread, or metastasize, to other organs. These and other types of cells the technology utilizes are obtained from blood tests as opposed to biopsies.

The nanoparticles, or "gold nanorod molecular probes," are fabricated so that their size is unique to their target marker. That way, when nanorods bind to their marker, they "scatter," or disrupt light in a characteristic manner that researchers can then pair to the nanorod's dimensions, its antibody and the target cancer marker, which must be present for binding to occur.

More than 200,000 women are diagnosed with breast cancer every year in the United States, and 80 percent of those women receive some type of therapy, Irudayaraj said. Since 40 percent of them will have a relapse, regular monitoring, which this technology aims to do, is vital.

Irudayaraj said using gold nanorods for cancer detection will be about one-third the cost of the current analogous technology, called flow cytometry. This method works by attaching fluorescent probes to cancer cells, whereas the nanorod technology has its basis in sensing plasmons, or sub-atomic particles present in the gold nanoparticles.

The nanorods also require only a few cells, whereas flow cytometry requires hundreds to thousands of cells. This could be advantageous when dealing with scarce sample sizes, Irudayaraj said.

Irudayaraj and his team - postdoctoral researcher Chenxu Yu and Harikrishna Nakshatri, a researcher at the Indiana University School of Medicine - demonstrated that the nanorods bind to three different markers. Two of the markers were used to calculate the invasiveness of the cancer cell, while one marker - present equally among the different cancer types - was used to calculate the degree to which the other markers were expressed, or present. Irudayaraj said his gold nanorods may be able to detect as many as 15 different markers in the future, possibly opening the door for even more comprehensive tests.

Ultimately, Irudayaraj imagines a new kind of routine and cost-effective procedure for the identification of cancer cells. A patient gives blood, from which cancer cells are obtained. Nanorods are then added to bind to specific markers, if present. Next, the cells are placed on a microscopic slide for imaging. After the rods absorb and re-emit radiation, a special camera records the scattered light, which a computer helps to analyze. Finally, based upon the data, a diagnosis is made.

Irudayaraj received funding from Purdue and the Indiana University School of Medicine, and the work was conducted at the Bindley Bioscience Center, of which he is a member. He plans to further develop the technology in the future and is researching mechanical properties of the nanorods and the surface markers to which they bind. He hopes to create nanoparticles that are capable of binding to more markers and to provide more information about these markers and what they reveal about the state of the cell.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source: Joseph Irudayaraj, (765) 494-0388, josephi@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Irudayaraj Surface diagnosis nanoparticles nanorod

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>