Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles may pan out as tool for cancer diagnosis

02.08.2007
When it comes to searching out cancer cells, gold may turn out to be a precious metal.

Purdue University researchers have created gold nanoparticles that are capable of identifying marker proteins on breast cancer cells, making the tiny particles a potential tool to better diagnose and treat cancer. The technology would be about three times cheaper than the most common current method and has the potential to provide many times the quantity and quality of data, said Joseph Irudayaraj, an associate professor of agricultural and biological engineering.

"We hope that this technology will soon play a critical role in early detection and monitoring of breast cancer," said Irudayaraj (pronounced ee-roo-THY'-a-razh), leader of a research team that developed a new method for fabricating the nanoparticles that is published online this month in the journal Analytical Chemistry. "Our goal is to see it in commercial use in about four years."

The gold nanoparticles, or nanorods, are tiny rod-shaped gold particles, even smaller than viruses, which are equipped with antibodies designed to bind to a specific marker on cell surfaces. Researchers analyze these surface markers, proteins on a cell's exterior, because they can contain valuable information about what type of cell they belong to or what state that cell may be in.

"In cancer diagnosis, the ability to accurately detect certain key markers will be very helpful because certain types of cancers have specific surface markers," Irudayaraj said.

In another study published last month in Nano Letters, Irudayaraj showed that the nanorods, when combined with a special imaging technique, were capable of recognizing cancer stem cells by binding to known markers on their exterior. Cancer stem cells are important to detect because they are particularly invasive and more likely than other types of cancer cells to spread, or metastasize, to other organs. These and other types of cells the technology utilizes are obtained from blood tests as opposed to biopsies.

The nanoparticles, or "gold nanorod molecular probes," are fabricated so that their size is unique to their target marker. That way, when nanorods bind to their marker, they "scatter," or disrupt light in a characteristic manner that researchers can then pair to the nanorod's dimensions, its antibody and the target cancer marker, which must be present for binding to occur.

More than 200,000 women are diagnosed with breast cancer every year in the United States, and 80 percent of those women receive some type of therapy, Irudayaraj said. Since 40 percent of them will have a relapse, regular monitoring, which this technology aims to do, is vital.

Irudayaraj said using gold nanorods for cancer detection will be about one-third the cost of the current analogous technology, called flow cytometry. This method works by attaching fluorescent probes to cancer cells, whereas the nanorod technology has its basis in sensing plasmons, or sub-atomic particles present in the gold nanoparticles.

The nanorods also require only a few cells, whereas flow cytometry requires hundreds to thousands of cells. This could be advantageous when dealing with scarce sample sizes, Irudayaraj said.

Irudayaraj and his team - postdoctoral researcher Chenxu Yu and Harikrishna Nakshatri, a researcher at the Indiana University School of Medicine - demonstrated that the nanorods bind to three different markers. Two of the markers were used to calculate the invasiveness of the cancer cell, while one marker - present equally among the different cancer types - was used to calculate the degree to which the other markers were expressed, or present. Irudayaraj said his gold nanorods may be able to detect as many as 15 different markers in the future, possibly opening the door for even more comprehensive tests.

Ultimately, Irudayaraj imagines a new kind of routine and cost-effective procedure for the identification of cancer cells. A patient gives blood, from which cancer cells are obtained. Nanorods are then added to bind to specific markers, if present. Next, the cells are placed on a microscopic slide for imaging. After the rods absorb and re-emit radiation, a special camera records the scattered light, which a computer helps to analyze. Finally, based upon the data, a diagnosis is made.

Irudayaraj received funding from Purdue and the Indiana University School of Medicine, and the work was conducted at the Bindley Bioscience Center, of which he is a member. He plans to further develop the technology in the future and is researching mechanical properties of the nanorods and the surface markers to which they bind. He hopes to create nanoparticles that are capable of binding to more markers and to provide more information about these markers and what they reveal about the state of the cell.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source: Joseph Irudayaraj, (765) 494-0388, josephi@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Irudayaraj Surface diagnosis nanoparticles nanorod

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>