Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edinburgh scientists identify factor that poises stem cells for specialisation

02.08.2007
In a paper published in the latest edition of the journal Development, scientists at the Institute for Stem Cell Research, of the University of Edinburgh, show that mouse embryonic stem cells need the protein FGF4 to become competent to be converted into specialised cell types, such as brain or muscle cells.

These findings add to the growing body of knowledge that researchers all over the world are using to direct embryonic stem cells to become specific specialised cells – a fundamental requirement for using lab-grown cells to model disease, test the effects of new drugs and, potentially, treat disease and injury.

Embryonic stem cells have the unique ability to divide to produce both copies of themselves and other, more specialised, cell types. The process whereby embryonic stem cells commit to become specialised cells is still obscure. In particular, the precise role of the protein Fibroblast Growth Factor 4 (FGF4) in this key decision point has been uncertain, until now.

Dr Tilo Kunath and Prof Austin Smith, together with collaborators in Montreal, Canada, show that FGF4 is not involved in the maintenance of cells in the naïve, self-renewing state but is essential to prime cells into a transitional stage, wherein they can go down any one of several paths.

Says Tilo, ‘Depending on the signal presented to the mouse embryonic stem cells, they can go back to the naïve state, and divide without limit, or down one of several specialisation pathways, including routes towards nerve cells or muscle cells. We have coined a name for the cells in this stage – we call them ‘commitment-competent’ cells, in contrast to the embryonic stem cells who do not receive a signal from FGF4, which we call ‘commitment-phobic’.

Human embryonic stem cells need FGF protein to grow in a dish. Whether this is required for maintenance of the human stem cells, or for priming the cells for specialisation, similarly to FGF4, is not yet known. If confirmed in human embryonic stem cells, these latest findings provide a further handle on how to manipulate these cells so as to direct them down specific pathways and obtain specialised cells.

This work was funded by a Parkinson’s Disease Society fellowship held by Tilo Kunath, with support from Stem Cell Sciences PLC, the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC), the European Commission Integrated Project ‘EuroStemCell’, and the National Cancer Institute of Canada.

Ana Godinho | alfa
Further information:
http://www.iscr.ed.ac.uk/news/press-releases-2007aug01.htm

Further reports about: Embryonic FGF4 embryonic stem specialisation

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>