Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First case of successful ovarian tissue transplantation between two, non-identical sisters

02.08.2007
A woman, whose ovaries had failed due to damage caused by chemotherapy and radiotherapy, has received a successful ovarian transplant from her genetically non-identical sister. The transplant restored her ovarian function, she started to menstruate and, after a year, doctors were able to recover two mature oocytes from her ovaries and fertilise them to produce two embryos.

This first case of a successful transplantation of ovarian tissue between two non-identical sisters is reported in the journal Human Reproduction today (Thursday 2 August) [1]. Professor Jacques Donnez, head of the department of gynaecology and professor and chairman at the Catholic University of Louvain in Brussels, Belgium, led the team that carried out the work [2].

In 1990, when she was 20, doctors treated Teresa Alvaro for beta-thalassemia – an inherited blood disorder characterised by reduced or absent haemoglobin, which is the oxygen-carrying protein in red blood cells. She received chemotherapy and radiotherapy before having a bone marrow transplant from her 17-year-old sister, Sandra Alvaro, who had an identically matched tissue type (human leukocyte antigen (HLA) type), which meant that Teresa’s immune system would not recognise her sister’s bone marrow as “foreign” and reject it.

The treatment was successful and Teresa was cured. However, in 1990 there were no procedures available for preserving her fertility before commencement of the treatment by, for instance, removing and freezing her eggs or ovarian tissue. The treatment caused complete ovarian failure, and her ovaries never recovered.

In July 2005, now aged 35, Teresa consulted Prof Donnez and his colleagues about the possibility of ovarian tissue transplantation from her sister to give her a chance of becoming pregnant.

Prof Donnez said: “Having already provided bone marrow in 1990, her sister, who was now aged 32 and had never become pregnant, badly wanted to help her sister by donating some of her own ovarian tissue.

“Although the option of oocyte donation from the sister to the patient was discussed, the patient refused this option. She preferred a transplant because she wanted to be ‘responsible’ for the follicular maturation and considered that it was more natural than egg donation, for which her sister would have to undergo ovarian stimulation with follicle stimulating hormones and then oocyte retrieval. In addition, her sister had asked expressly to be the tissue donor and had refused to undergo ovarian stimulation for oocyte donation.”

Analysis of the sisters’ HLA type showed that their genetically different cells coexisted successfully together (chimaerism) and that, therefore, no immuno-suppressive treatment would be required to prevent the ovarian graft being rejected. The earlier bone marrow transplant and resulting mixing of the sisters’ cells meant that Teresa’s immune system would recognise Sandra’s ovarian tissue as “self” rather than “foreign”.

In February 2006, Teresa and Sandra were anaesthetised together and three small sections of ovarian tissue were removed from Sandra via laparoscopy and within less than a minute were being sewn on to one of Teresa’s atrophied ovaries, also via laparoscopy. The sisters were discharged from hospital the day after surgery.

After six months Teresa started menstrual bleeding and this, together with differences in hormone levels, confirmed that ovarian function had been restored. Her menstrual cycles have continued ever since. A year after the transplant, the doctors retrieved two mature oocytes from her ovary and fertilised them with her husband’s sperm via ICSI (intracytoplasmic sperm injection) – they decided to use ICSI rather than attempting natural conception because the husband had a low sperm count. One of the resulting embryos developed to the two-cell stage and the other to the three-cell stage, but then both ceased to develop further, and so the embryos were not transferred to her uterus.

Prof Donnez said: “We do not know why the embryos ceased to develop, but this also happens during normal cycles of IVF. The patient is planning more IVF attempts in the future.”

He said that it was too early to say whether this procedure would ever be successful enough to enable a woman to become pregnant successfully and give birth to a live baby. However, the work did give hope to women who had not had an opportunity to freeze either their eggs or their ovarian tissue, and it emphasised the importance of leaving at least one ovary in place during any treatment because the ovary offered an excellent site for a subsequent transplant of ovarian tissue.

“This method is an option for women who have not had their ovarian tissue cryopreserved, either because chemotherapy was given before 1996, or because cryopreservation was not proposed or not available in the hospital where the patient was treated,” he said.

“In theory, the procedure could also be used between two, unrelated women, as long as the two women were HLA compatible and if the donor had previously given bone marrow to the recipient, as in the case we are reporting here,” he concluded.

Teresa Alvaro said: “Early in 2005 my gynaecologist told me that the chemotherapy that I had to go through in 1990 in preparation for my bone marrow transplant had severely affected my fertility. A few months later I happened to read an article on an American woman who got pregnant after she had ovarian tissue transplanted from her twin sister. I didn’t hesitate for a second and went to see Prof Donnez together with my sister. Our antigens appeared to be identical, and therefore the chances of rejection were minimal. The operation was a success. I can get pregnant the natural way. That’s something I could never have hoped for a couple of years ago.”

Emma Mason | alfa
Further information:
http://www.eshre.com
http://www.oxfordjournals.org/eshre

Further reports about: Donnez Transplantation chemotherapy embryos non-identical oocyte ovarian tissue

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>