Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First case of successful ovarian tissue transplantation between two, non-identical sisters

A woman, whose ovaries had failed due to damage caused by chemotherapy and radiotherapy, has received a successful ovarian transplant from her genetically non-identical sister. The transplant restored her ovarian function, she started to menstruate and, after a year, doctors were able to recover two mature oocytes from her ovaries and fertilise them to produce two embryos.

This first case of a successful transplantation of ovarian tissue between two non-identical sisters is reported in the journal Human Reproduction today (Thursday 2 August) [1]. Professor Jacques Donnez, head of the department of gynaecology and professor and chairman at the Catholic University of Louvain in Brussels, Belgium, led the team that carried out the work [2].

In 1990, when she was 20, doctors treated Teresa Alvaro for beta-thalassemia – an inherited blood disorder characterised by reduced or absent haemoglobin, which is the oxygen-carrying protein in red blood cells. She received chemotherapy and radiotherapy before having a bone marrow transplant from her 17-year-old sister, Sandra Alvaro, who had an identically matched tissue type (human leukocyte antigen (HLA) type), which meant that Teresa’s immune system would not recognise her sister’s bone marrow as “foreign” and reject it.

The treatment was successful and Teresa was cured. However, in 1990 there were no procedures available for preserving her fertility before commencement of the treatment by, for instance, removing and freezing her eggs or ovarian tissue. The treatment caused complete ovarian failure, and her ovaries never recovered.

In July 2005, now aged 35, Teresa consulted Prof Donnez and his colleagues about the possibility of ovarian tissue transplantation from her sister to give her a chance of becoming pregnant.

Prof Donnez said: “Having already provided bone marrow in 1990, her sister, who was now aged 32 and had never become pregnant, badly wanted to help her sister by donating some of her own ovarian tissue.

“Although the option of oocyte donation from the sister to the patient was discussed, the patient refused this option. She preferred a transplant because she wanted to be ‘responsible’ for the follicular maturation and considered that it was more natural than egg donation, for which her sister would have to undergo ovarian stimulation with follicle stimulating hormones and then oocyte retrieval. In addition, her sister had asked expressly to be the tissue donor and had refused to undergo ovarian stimulation for oocyte donation.”

Analysis of the sisters’ HLA type showed that their genetically different cells coexisted successfully together (chimaerism) and that, therefore, no immuno-suppressive treatment would be required to prevent the ovarian graft being rejected. The earlier bone marrow transplant and resulting mixing of the sisters’ cells meant that Teresa’s immune system would recognise Sandra’s ovarian tissue as “self” rather than “foreign”.

In February 2006, Teresa and Sandra were anaesthetised together and three small sections of ovarian tissue were removed from Sandra via laparoscopy and within less than a minute were being sewn on to one of Teresa’s atrophied ovaries, also via laparoscopy. The sisters were discharged from hospital the day after surgery.

After six months Teresa started menstrual bleeding and this, together with differences in hormone levels, confirmed that ovarian function had been restored. Her menstrual cycles have continued ever since. A year after the transplant, the doctors retrieved two mature oocytes from her ovary and fertilised them with her husband’s sperm via ICSI (intracytoplasmic sperm injection) – they decided to use ICSI rather than attempting natural conception because the husband had a low sperm count. One of the resulting embryos developed to the two-cell stage and the other to the three-cell stage, but then both ceased to develop further, and so the embryos were not transferred to her uterus.

Prof Donnez said: “We do not know why the embryos ceased to develop, but this also happens during normal cycles of IVF. The patient is planning more IVF attempts in the future.”

He said that it was too early to say whether this procedure would ever be successful enough to enable a woman to become pregnant successfully and give birth to a live baby. However, the work did give hope to women who had not had an opportunity to freeze either their eggs or their ovarian tissue, and it emphasised the importance of leaving at least one ovary in place during any treatment because the ovary offered an excellent site for a subsequent transplant of ovarian tissue.

“This method is an option for women who have not had their ovarian tissue cryopreserved, either because chemotherapy was given before 1996, or because cryopreservation was not proposed or not available in the hospital where the patient was treated,” he said.

“In theory, the procedure could also be used between two, unrelated women, as long as the two women were HLA compatible and if the donor had previously given bone marrow to the recipient, as in the case we are reporting here,” he concluded.

Teresa Alvaro said: “Early in 2005 my gynaecologist told me that the chemotherapy that I had to go through in 1990 in preparation for my bone marrow transplant had severely affected my fertility. A few months later I happened to read an article on an American woman who got pregnant after she had ovarian tissue transplanted from her twin sister. I didn’t hesitate for a second and went to see Prof Donnez together with my sister. Our antigens appeared to be identical, and therefore the chances of rejection were minimal. The operation was a success. I can get pregnant the natural way. That’s something I could never have hoped for a couple of years ago.”

Emma Mason | alfa
Further information:

Further reports about: Donnez Transplantation chemotherapy embryos non-identical oocyte ovarian tissue

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>