Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating antibiotic use in acute care patients

01.08.2007
Pigs could be the key to understanding how antibiotic resistant bacteria persist in Intensive Care Units in hospitals.

NSW Department of Primary Industries (NSW DPI) Immunology & Molecular Diagnostic Research Unit Team Leader, Dr James Chin, says it is commonly believed that each time an antibiotic is used only pathogens or disease-causing bacteria will be killed.

"Antibiotic use in hospitals is often perceived to be solely directed against only bad bacteria.

"In reality, antibiotics also act against entire microbial communities, including the good bacteria which can protect patients from pathogenic bacteria.

"Antibiotics do not just eliminate bad bacteria", Dr Chin said. "They also maintain a pool of antibiotic resistance genes within the microbial community of patients treated with antibiotics."

Using pigs as a model, Dr Chin and Dr Toni Chapman at NSW DPI’s Elizabeth Macarthur Agricultural Institute have examined how E.coli bacteria – a common cause of diarrhoea in pigs and humans - respond to treatment by antibiotics.

Dr Chin told the 2007 Australian Society for Microbiology’s annual conference in Adelaide in July that: "The current theory of antibiotic resistance is that the ‘fittest’ bacteria, that is, those carrying genes for resistance, are the most likely to survive.

"Because antibiotic treatment will never kill all bacteria, bad or good, there will always be a pool of antibiotic resistance bacteria that can potentially transfer resistance to incoming pathogens.

"It is important to identify the antimicrobial resistant gene pool in entire microbial communities before antibiotic treatment.

Dr Chin said this has been tested with E. coli in pigs.

"Our research shows clearly that use of one antibiotic to treat E. coli not only increases resistance against that antibiotic but also increases the carriage of resistance genes against other classes of antibiotics.

"This creates a real problem because subsequent therapy with a second antibiotic may be ineffective because resistance against the second antibiotic had already been increased by the first antibiotic."

In the United States an estimated 10 percent of patients get sick because of infections acquired whilst being treated in hospital. More careful use of antibiotics is regarded as vital.

Dr Chin said the use of antibiotics for disease prevention is critical in patients admitted to intensive care. However there is currently a major bottleneck when it comes to deciding which antibiotics to use.

"Current protocols require pathogens to be cultured, leading to delays of some days before the bacteria to be targeted can be accurately identified.

Dr Chin said for this reason it is important to develop a molecular detection method that can identify antibiotic resistance signatures of entire microbial communities.

"Our hope is that this kind of information will equip clinicians to better manage prescribing of antibiotics."

This latest research is being planned in collaboration with clinical microbiologists and intensive care specialists at Westmead Hospital.

Contact: Dr James Chin, Elizabeth Macarthur Agricultural Institute, (02) 4640 6359, james.chin@dpi.nsw.gov.au.

Joanne Finlay | EurekAlert!
Further information:
http://www.nsw.gov.au

Further reports about: Chin antibiotic antibiotic resistance resistance

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>