Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating antibiotic use in acute care patients

01.08.2007
Pigs could be the key to understanding how antibiotic resistant bacteria persist in Intensive Care Units in hospitals.

NSW Department of Primary Industries (NSW DPI) Immunology & Molecular Diagnostic Research Unit Team Leader, Dr James Chin, says it is commonly believed that each time an antibiotic is used only pathogens or disease-causing bacteria will be killed.

"Antibiotic use in hospitals is often perceived to be solely directed against only bad bacteria.

"In reality, antibiotics also act against entire microbial communities, including the good bacteria which can protect patients from pathogenic bacteria.

"Antibiotics do not just eliminate bad bacteria", Dr Chin said. "They also maintain a pool of antibiotic resistance genes within the microbial community of patients treated with antibiotics."

Using pigs as a model, Dr Chin and Dr Toni Chapman at NSW DPI’s Elizabeth Macarthur Agricultural Institute have examined how E.coli bacteria – a common cause of diarrhoea in pigs and humans - respond to treatment by antibiotics.

Dr Chin told the 2007 Australian Society for Microbiology’s annual conference in Adelaide in July that: "The current theory of antibiotic resistance is that the ‘fittest’ bacteria, that is, those carrying genes for resistance, are the most likely to survive.

"Because antibiotic treatment will never kill all bacteria, bad or good, there will always be a pool of antibiotic resistance bacteria that can potentially transfer resistance to incoming pathogens.

"It is important to identify the antimicrobial resistant gene pool in entire microbial communities before antibiotic treatment.

Dr Chin said this has been tested with E. coli in pigs.

"Our research shows clearly that use of one antibiotic to treat E. coli not only increases resistance against that antibiotic but also increases the carriage of resistance genes against other classes of antibiotics.

"This creates a real problem because subsequent therapy with a second antibiotic may be ineffective because resistance against the second antibiotic had already been increased by the first antibiotic."

In the United States an estimated 10 percent of patients get sick because of infections acquired whilst being treated in hospital. More careful use of antibiotics is regarded as vital.

Dr Chin said the use of antibiotics for disease prevention is critical in patients admitted to intensive care. However there is currently a major bottleneck when it comes to deciding which antibiotics to use.

"Current protocols require pathogens to be cultured, leading to delays of some days before the bacteria to be targeted can be accurately identified.

Dr Chin said for this reason it is important to develop a molecular detection method that can identify antibiotic resistance signatures of entire microbial communities.

"Our hope is that this kind of information will equip clinicians to better manage prescribing of antibiotics."

This latest research is being planned in collaboration with clinical microbiologists and intensive care specialists at Westmead Hospital.

Contact: Dr James Chin, Elizabeth Macarthur Agricultural Institute, (02) 4640 6359, james.chin@dpi.nsw.gov.au.

Joanne Finlay | EurekAlert!
Further information:
http://www.nsw.gov.au

Further reports about: Chin antibiotic antibiotic resistance resistance

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>