Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waters off Washington state only second place in world where glass sponge reefs found

01.08.2007
Thirty miles west of Grays Harbor, University of Washington scientists have discovered large colonies of glass sponges thriving on the seafloor. The species of glass sponges capable of building reefs were thought extinct for 100 million years until they were found in recent years in the protected waters of Canada's Georgia and Hecata straits, the only place in the world they've been observed until now.

The discovery in Washington waters extends the range of reef-building glass sponges into open ocean.

The sponge reefs could be important to the ecosystems on the Washington coast because they create a thriving oasis dense with sea life on seafloor that is otherwise sparely populated for miles, says Paul Johnson, UW professor of oceanography and chief scientist on the UW's ship Thomas G. Thompson, June 10-16, when the Washington glass sponge reefs were discovered. The glass sponge reefs were alive with zooplankton, sardines, crabs, prawns and rockfish.

"It's like looking at an overcrowded aquarium in an expensive Japanese restaurant," he says.

... more about:
»Canadian »Johnson »Silica »reef-building »species

The Washington sponge reefs are each hundreds of feet in length and width. It's possible that the state has reefs comparable to the Canadian reefs that are miles in length, Johnson says.

The glass sponge reefs on the continental shelf west of Grays Harbor appear to be thriving on specialized bacteria that consume methane gas that the UW scientists were surprised to discover flowing out of the seafloor in copious amounts. Methane has not been detected by Canadian scientists near their glass sponge reefs, thus the Washington margin reefs could represent a new type of ecosystem on the shelf, one where the abundant biology is fueled by methane gas derived from ancient carbon in the sediments, Johnson says.

The glass sponges – so-called because their skeletons are made of silica (the same material as beach sand) – come in un-sponge-like shapes similar to cups and funnels. They range in color from creamy white to brilliant hues of yellow. The reefs build upward as new generations of sponges grow atop the still-hard silica skeletons of previous generations. The reefs just discovered are in 650 feet of water and rise between 6 and 15 feet above the seafloor. The sponges on the mounds grow as tall as 1 ½ feet.

The mounds off Grays Harbor have the same trio of glass sponge species as the reefs discovered in Canadian waters. The reefs in the Georgia and Hecata straits are in relatively protected marine waters, causing scientists to previously speculate that those reef-building glass sponges required a special ecological niche that allowed them to grow in those waters.

The field discovered on the open Washington shelf is very exposed to winter storms, which makes it much more likely that other reef-building glass sponges are still to be found around the globe, for example, on the Alaskan and Russian continental shelves, Johnson says.

Solitary glass sponges are found living in many parts of the world's oceans but are composed of different species than the ones capable of colonizing themselves into reefs. Individual glass sponges generally live 100 to 200 years and the Canadian sponge reefs have been dated as being 8,000 years old, making them comparable to coral reefs and redwood forests, Johnson says.

The reef-building sponge species had their heyday 150 million years ago when ocean conditions allowed them to grown near the surface of the ocean. Their fossilized remains, for example, are found in outcrops that are hundreds of miles long on land throughout Europe, all sites that were underwater in the late Jurassic period. It was thought the reef-building glass sponges were all driven to extinction 100 million years ago when diatoms, single-celled algae that also require silica dissolved in seawater, evolved in the global oceans and began using up the silica needed by the reef-building glass sponges.

The Washington and British Columbia reef-building glass sponges have learned to live at water depths that are below the sunlit zone where diatoms live but where the essential dissolved silica they need is available.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Canadian Johnson Silica reef-building species

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>