Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waters off Washington state only second place in world where glass sponge reefs found

01.08.2007
Thirty miles west of Grays Harbor, University of Washington scientists have discovered large colonies of glass sponges thriving on the seafloor. The species of glass sponges capable of building reefs were thought extinct for 100 million years until they were found in recent years in the protected waters of Canada's Georgia and Hecata straits, the only place in the world they've been observed until now.

The discovery in Washington waters extends the range of reef-building glass sponges into open ocean.

The sponge reefs could be important to the ecosystems on the Washington coast because they create a thriving oasis dense with sea life on seafloor that is otherwise sparely populated for miles, says Paul Johnson, UW professor of oceanography and chief scientist on the UW's ship Thomas G. Thompson, June 10-16, when the Washington glass sponge reefs were discovered. The glass sponge reefs were alive with zooplankton, sardines, crabs, prawns and rockfish.

"It's like looking at an overcrowded aquarium in an expensive Japanese restaurant," he says.

... more about:
»Canadian »Johnson »Silica »reef-building »species

The Washington sponge reefs are each hundreds of feet in length and width. It's possible that the state has reefs comparable to the Canadian reefs that are miles in length, Johnson says.

The glass sponge reefs on the continental shelf west of Grays Harbor appear to be thriving on specialized bacteria that consume methane gas that the UW scientists were surprised to discover flowing out of the seafloor in copious amounts. Methane has not been detected by Canadian scientists near their glass sponge reefs, thus the Washington margin reefs could represent a new type of ecosystem on the shelf, one where the abundant biology is fueled by methane gas derived from ancient carbon in the sediments, Johnson says.

The glass sponges – so-called because their skeletons are made of silica (the same material as beach sand) – come in un-sponge-like shapes similar to cups and funnels. They range in color from creamy white to brilliant hues of yellow. The reefs build upward as new generations of sponges grow atop the still-hard silica skeletons of previous generations. The reefs just discovered are in 650 feet of water and rise between 6 and 15 feet above the seafloor. The sponges on the mounds grow as tall as 1 ½ feet.

The mounds off Grays Harbor have the same trio of glass sponge species as the reefs discovered in Canadian waters. The reefs in the Georgia and Hecata straits are in relatively protected marine waters, causing scientists to previously speculate that those reef-building glass sponges required a special ecological niche that allowed them to grow in those waters.

The field discovered on the open Washington shelf is very exposed to winter storms, which makes it much more likely that other reef-building glass sponges are still to be found around the globe, for example, on the Alaskan and Russian continental shelves, Johnson says.

Solitary glass sponges are found living in many parts of the world's oceans but are composed of different species than the ones capable of colonizing themselves into reefs. Individual glass sponges generally live 100 to 200 years and the Canadian sponge reefs have been dated as being 8,000 years old, making them comparable to coral reefs and redwood forests, Johnson says.

The reef-building sponge species had their heyday 150 million years ago when ocean conditions allowed them to grown near the surface of the ocean. Their fossilized remains, for example, are found in outcrops that are hundreds of miles long on land throughout Europe, all sites that were underwater in the late Jurassic period. It was thought the reef-building glass sponges were all driven to extinction 100 million years ago when diatoms, single-celled algae that also require silica dissolved in seawater, evolved in the global oceans and began using up the silica needed by the reef-building glass sponges.

The Washington and British Columbia reef-building glass sponges have learned to live at water depths that are below the sunlit zone where diatoms live but where the essential dissolved silica they need is available.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Canadian Johnson Silica reef-building species

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>