Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin grown in plants relieves diabetes in mice

01.08.2007
Henry Daniell's results and prior research indicate that insulin capsules could someday be used to prevent diabetes before symptoms appear and treat the disease in its later stages

Capsules of insulin produced in genetically modified lettuce could hold the key to restoring the body’s ability to produce insulin and help millions of Americans who suffer from insulin-dependent diabetes, according to University of Central Florida biomedical researchers.

Professor Henry Daniell’s research team genetically engineered tobacco plants with the insulin gene and then administered freeze-dried plant cells to five-week-old diabetic mice as a powder for eight weeks. By the end of the study, the diabetic mice had normal blood and urine sugar levels, and their cells were producing normal levels of insulin.

Those results and prior research indicate that insulin capsules could someday be used to prevent diabetes before symptoms appear and treat the disease in its later stages, Daniell said. He has since proposed using lettuce instead of tobacco to produce the insulin because that crop can be produced cheaply and avoids the negative stigma associated with tobacco.

... more about:
»Daniell »Insulin »Tobacco »plant cell

The National Institutes of Health provided $2 million to fund the UCF study. The findings are reported in the July issue of Plant Biotechnology Journal.

Insulin-dependent, or Type 1, diabetes is an autoimmune disease in which the body’s immune system attacks and destroys insulin and insulin-producing beta cells in the pancreas. Insulin is a hormone that is needed to convert sugar, starches and other food into energy.

Insulin typically is given through shots and not pills so the hormone can go straight into the bloodstream. In Daniell’s method, plant cell walls made of cellulose initially prevent insulin from degrading. When the plant cells containing insulin reach the intestine, bacteria living there begin to slowly break down the cell walls and gradually release insulin into the bloodstream.

“Currently, the only relief for diabetes is a momentary relief,” Daniell said. “Diabetics still have to monitor their blood and urine sugar levels. They have to inject themselves with insulin several times a day. Having a permanent solution for this, I’m sure, would be pretty exciting.”

Though produced in lettuce, the insulin would be delivered to human patients as a powder in capsules because the dosage must be controlled carefully.

If human trials are successful, the impact of Daniell’s research could affect millions of diabetics worldwide and dramatically reduce the costs of fighting a disease that can lead to heart and kidney diseases and blindness.

About 20.8 million children and adults in the United States, or about 7 percent of the population, have Type 1 or 2 diabetes, according to the American Diabetes Association.

The number of Americans with diabetes is projected to double by 2025, according to a study released last month by the National Changing Diabetes Program during a congressional briefing. That study by Mathematica Policy Research Inc. also reported that one of every eight federal health care dollars – $79.7 billion out of $645 billion -- is spent on treating people with diabetes.

“Diabetes is a big health and financial burden in the United States and in the rest of the world,” Daniell said. “This study would facilitate a dramatic change because so far there is no medicine that will cure insulin-dependent diabetes.”

Daniell’s method of growing insulin in plants is similar to what he used for an earlier study to produce anthrax vaccine in tobacco. In the earlier study, which also involved mice, Daniell showed and the National Institutes of Health confirmed that enough safe anthrax vaccine to inoculate everyone in the United States could be grown inexpensively in only one acre of tobacco plants.

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

Further reports about: Daniell Insulin Tobacco plant cell

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>