Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists move closer to bio-engineered bladders

01.08.2007
Researchers at the University of York are using an understanding of the special cells that line the bladder to develop ways of restoring continence to patients with serious bladder conditions, including cancer.

The research, highlighted in the quarterly magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week, is looking at urothelial cells. These are the specialised lining cells of the bladder that enable it to retain urine. The cells have a very low turnover rate, but scientists have found that if the bladder is damaged, the urothelial cells are able to rapidly re-grow to repair the wound. The researchers hope to harness this property to engineer new bladders.

The York researchers have developed a series of models that mean they can study human urothelial cells in the laboratory. Of these models, the most important is their development of a urothelial cell sheet that functions as it would in the bladder. When the researchers create a wound in this model, the cells regenerate to repair the damage - just as they would in the body.

Pharmaceutical companies should soon be able to use the research models to test therapies for the bladder, but the longer term aim for this research is to help patients who have lost bladder function or have had all or part of their bladder removed because of cancer.

... more about:
»Bladder »urothelial

Research leader, Professor Jenny Southgate, explains: "The models we have developed mean that we have been able to examine how urothelial cells in the bladder self-renew to cope with injury.

"With this basic understanding of how the cells work, we are moving towards being able to engineer new bladders. Currently, substitute bladders can be created by using a section of the patient's bowel, but this can lead to complications, as the bowel does not have the same urine-holding properties as urothelial cells. One solution could be to use laboratory-grown urothelial cells to line a section of bowel."

The hope in the long term is that collaborative research to combine Professor Southgate's work with biomaterial studies at the Universities of Durham and Leeds could mean engineered bladder tissue ready for transplantation.

Professor Southgate, who is Director of the Jack Birch Unit for Molecular Carcinogenesis, in the Department of Biology at the University of York said: "Our most exciting work moving forward is to develop natural and synthetic biomaterials that could be combined with regenerating urothelial cells. This has the potential to produce viable bladder tissue for transplant into patients who need replacement bladders."

The York research highlights the importance of basic biology research in underpinning medical advances. Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Fundamental bioscience research forms the foundation for much of the medical advances we have today and hope for in the future. We need a solid understanding of how our bodies work and maintain themselves before we can understand what goes wrong when they become diseased and how the disease can be treated."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Bladder urothelial

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>