Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists move closer to bio-engineered bladders

01.08.2007
Researchers at the University of York are using an understanding of the special cells that line the bladder to develop ways of restoring continence to patients with serious bladder conditions, including cancer.

The research, highlighted in the quarterly magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week, is looking at urothelial cells. These are the specialised lining cells of the bladder that enable it to retain urine. The cells have a very low turnover rate, but scientists have found that if the bladder is damaged, the urothelial cells are able to rapidly re-grow to repair the wound. The researchers hope to harness this property to engineer new bladders.

The York researchers have developed a series of models that mean they can study human urothelial cells in the laboratory. Of these models, the most important is their development of a urothelial cell sheet that functions as it would in the bladder. When the researchers create a wound in this model, the cells regenerate to repair the damage - just as they would in the body.

Pharmaceutical companies should soon be able to use the research models to test therapies for the bladder, but the longer term aim for this research is to help patients who have lost bladder function or have had all or part of their bladder removed because of cancer.

... more about:
»Bladder »urothelial

Research leader, Professor Jenny Southgate, explains: "The models we have developed mean that we have been able to examine how urothelial cells in the bladder self-renew to cope with injury.

"With this basic understanding of how the cells work, we are moving towards being able to engineer new bladders. Currently, substitute bladders can be created by using a section of the patient's bowel, but this can lead to complications, as the bowel does not have the same urine-holding properties as urothelial cells. One solution could be to use laboratory-grown urothelial cells to line a section of bowel."

The hope in the long term is that collaborative research to combine Professor Southgate's work with biomaterial studies at the Universities of Durham and Leeds could mean engineered bladder tissue ready for transplantation.

Professor Southgate, who is Director of the Jack Birch Unit for Molecular Carcinogenesis, in the Department of Biology at the University of York said: "Our most exciting work moving forward is to develop natural and synthetic biomaterials that could be combined with regenerating urothelial cells. This has the potential to produce viable bladder tissue for transplant into patients who need replacement bladders."

The York research highlights the importance of basic biology research in underpinning medical advances. Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Fundamental bioscience research forms the foundation for much of the medical advances we have today and hope for in the future. We need a solid understanding of how our bodies work and maintain themselves before we can understand what goes wrong when they become diseased and how the disease can be treated."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Bladder urothelial

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>