Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists move closer to bio-engineered bladders

01.08.2007
Researchers at the University of York are using an understanding of the special cells that line the bladder to develop ways of restoring continence to patients with serious bladder conditions, including cancer.

The research, highlighted in the quarterly magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week, is looking at urothelial cells. These are the specialised lining cells of the bladder that enable it to retain urine. The cells have a very low turnover rate, but scientists have found that if the bladder is damaged, the urothelial cells are able to rapidly re-grow to repair the wound. The researchers hope to harness this property to engineer new bladders.

The York researchers have developed a series of models that mean they can study human urothelial cells in the laboratory. Of these models, the most important is their development of a urothelial cell sheet that functions as it would in the bladder. When the researchers create a wound in this model, the cells regenerate to repair the damage - just as they would in the body.

Pharmaceutical companies should soon be able to use the research models to test therapies for the bladder, but the longer term aim for this research is to help patients who have lost bladder function or have had all or part of their bladder removed because of cancer.

... more about:
»Bladder »urothelial

Research leader, Professor Jenny Southgate, explains: "The models we have developed mean that we have been able to examine how urothelial cells in the bladder self-renew to cope with injury.

"With this basic understanding of how the cells work, we are moving towards being able to engineer new bladders. Currently, substitute bladders can be created by using a section of the patient's bowel, but this can lead to complications, as the bowel does not have the same urine-holding properties as urothelial cells. One solution could be to use laboratory-grown urothelial cells to line a section of bowel."

The hope in the long term is that collaborative research to combine Professor Southgate's work with biomaterial studies at the Universities of Durham and Leeds could mean engineered bladder tissue ready for transplantation.

Professor Southgate, who is Director of the Jack Birch Unit for Molecular Carcinogenesis, in the Department of Biology at the University of York said: "Our most exciting work moving forward is to develop natural and synthetic biomaterials that could be combined with regenerating urothelial cells. This has the potential to produce viable bladder tissue for transplant into patients who need replacement bladders."

The York research highlights the importance of basic biology research in underpinning medical advances. Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Fundamental bioscience research forms the foundation for much of the medical advances we have today and hope for in the future. We need a solid understanding of how our bodies work and maintain themselves before we can understand what goes wrong when they become diseased and how the disease can be treated."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Bladder urothelial

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>