Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flip of genetic switch causes cancers in mice to self-destruct

31.07.2007
Killing cancerous tumors isn't easy, as anyone who has suffered through chemotherapy can attest. But a new study in mice shows that switching off a single malfunctioning gene can halt the limitless division of tumor cells and turn them back to the path of their own planned obsolescence.

The surprising possibility that a cell's own natural mechanism for ensuring its mortality could be used to vanquish tumors opens the door to a new approach to developing drugs to treat cancer patients, according to Dean Felsher, MD, PhD, associate professor of medicine (oncology) and of pathology at the Stanford University School of Medicine. Felsher is the senior author of the study to be published July 30 in the advance online version of the Proceedings of the National Academy of Sciences.

"Our research implies that by shutting off a critical cancer gene, tumor cells can realize that they are broken and restore this physiologic fail-safe program," said Felsher.

Cancer can be notoriously resistant to medical treatment. Not only do cancer cells proliferate uncontrollably, they somehow circumvent the mechanism that causes normal cells to die when they get old or malfunction. That makes cancer cells effectively immortal unless doctors manage to squelch them.

... more about:
»Felsher »Switch »causes »mechanism »senescence

The gene Felsher's team studied produces a protein called Myc (pronounced "mick"), which promotes cell division. A mutation of the gene causes cells to overproduce the protein, prompting perpetual cell division and tumor growth. By turning off the mutated gene, the researchers found that not only did uncontrolled cell division cease, but the cells also reactivated a normal physiological mechanism, called senescence, which makes it possible for a cell to eventually die.

"What was unexpected was just the fact that cancer cells had retained the ability to undergo senescence at all," said Felsher. Cancer researchers had long thought the senescence process had to be irreversibly disrupted for a tumor to develop.

The researchers worked with a series of mice engineered to have Myc-triggered cancers of either the liver, blood or bones, along with a specially constructed version of the Myc gene that they could switch off by feeding the mice antibiotics. When the mice dined on doses of the drugs, invariably, the tumors ceased growing and then diminished, with some disappearing over the course of just a few days.

Although Felsher's lab had previously shown that mouse tumors diminished and disappeared when Myc was switched off, they hadn't been sure how the process actually worked. Historically, most research involving genetic methods of battling cancer cells has focused on reactivating genes called tumor-suppressor genes, which are generally overcome by a proliferating cancer. No one had explored the idea that senescence might play a key role in diminishing tumors.

Felsher described senescence as acting like a fail-safe mechanism to stop cancer. When a cell detects a deleterious mutation, it launches the senescence process, resulting in the permanent loss of the cell's ability to proliferate, thus halting any cancer.

"In order to become tumor cells, those cells have to overcome senescence," said Chi-Hwa Wu, PhD, postdoctoral researcher in Felsher's lab and first author of the study. Wu had the inspiration to explore whether the sudden diminishment they had observed in the tumors might be due to the reactivation of some latent remnant of the trigger for senescence.

Through a series of experiments looking at enzymes associated with the senescence process, as well as some molecular markers, Wu confirmed her suspicion. And not only was senescence occurring in cells that had been thought to be incapable of it, the process was reactivated in all the different tumors they studied.

Consider it a cell version of the Jekyll-and-Hyde transformation. "It's sort of like Mr. Hyde realizing that there's something wrong with him and then being able to put himself back into his normal state as Dr. Jekyll," Felsher said.

In addition to the deepened understanding of how the process of senescence works, Felsher and Wu see a lot of potential for new approaches to treating cancer, beyond the traditional tactic of trying to kill cancer cells directly. "This work implies that maybe part of the strategy should involve figuring out how to get the cancer cells to just be allowed to do what they originally wanted to do anyway, which is to not be proliferating endlessly and growing uncontrolled," said Felsher.

The next step for the team is to see how well the approach works in human cancer cells. "And we're also trying to figure out what the mechanism is," Felsher said. "What are the molecular mechanisms of this, so that we can figure out how to better treat cancer"

Lou Bergeron | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Felsher Switch causes mechanism senescence

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>