Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Identifies Anti-viral Protein That May Predict Who Might be at Risk to Develop Lupus

31.07.2007
Certain families produce higher levels of a specific molecule, called interferon-alpha, that primes the body’s immune system to turn on, and in some cases initiate an autoimmune attack on itself, according to new research from Hospital for Special Surgery in New York City.

Our immune system is able to defeat disease-causing viruses and bacteria every day using chemical weapons, like interferon-alpha, that have been honed over time. But like anything else, we can have too much of a good thing.

Using blood samples from two large repositories, rheumatologist Mary K. Crow, M.D., and her colleagues at Hospital for Special Surgery compared 266 patients with systemic lupus erythematosus (SLE), an autoimmune disease, with 405 of their healthy relatives. Specifically, Dr. Crow, who is director of Rheumatology Research and associate chief of the Division of Rheumatology at Hospital for Special Surgery, and her team were looking at levels of interferon-alpha. The researchers found that when an SLE patient had high blood levels, so did many of their healthy first degree family members. There was a genetic link.

The study, which is now online in advance of print, will be in the September issue of Genes and Immunity.

“There were a number of first degree relatives of patients with SLE that had high interferon-alpha levels,” says Timothy Niewold, M.D., first author of the study and a former rheumatology fellow at Hospital for Special Surgery. “But otherwise, those family members looked and felt perfectly fine. All of their diagnostics were normal.”

Our immune system works by distinguishing self from non-self, so that it preferentially attacks foreign microbes. Interferon-alpha is normally a helpful molecule in this regard, leading the fight against invading viruses. Genes producing high levels of interferon-alpha have probably been selected over time to help fight infection. But high levels of interferon-alpha in some individuals may also confuse the immune system so that it doesn’t know self from non-self anymore – turning and attacking its own tissue as in SLE.

As far back as the 1970s, doctors had known that a characteristic of patients with SLE, who are mainly women in their childbearing years, was an abnormally high blood level of interferon-alpha. However, they didn’t know if the high interferon levels were the cause of the disease or just an associated side-effect.

“A role for interferon-alpha in lupus has been suggested for a number of years,” says Dr. Crow, who is also director of the Autoimmunity and Inflammation Research Program and co-director of the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery. “However, all of the studies to date had focused on how the levels of interferon-alpha were controlled and what the effects of such high levels were. The real question was whether interferon-alpha was playing a primary role in the disease or not.”

The blood samples showed that some family members of patients with high levels of interferon-alpha also had higher levels than unrelated healthy individuals, irrespective of their ethnic background. This observation supported the idea that high interferon-alpha levels play an important primary role in the disease.

Next, the researchers examined the samples for two types of autoantibodies common to SLE patients. SLE patients with low levels of interferon-alpha were more likely to have neither of the characteristic autoantibodies, while patients with the highest levels were more likely to have both. However the healthy family members with high interferon-alpha did not have either autoantibody. This led the scientists to propose a “two-hit” model for the development of lupus. Genetics that cause high levels of interferon-alpha may predispose a person to SLE, but the disease appears only when something else, perhaps an environmental factor, pushes the immune system to the breaking point and causes the production of the damaging autoantibodies.

“The high level of interferon-alpha doesn’t always cause the disease, because many healthy family members have high levels,” says Dr. Niewold, who is now an Instructor in the Section of Rheumatology at the University of Chicago. “We think, however, that those levels somehow prime the immune system, lowering the threshold, so that when the wrong stimulus comes along, the cells of the immune system begin making the autoantibodies and the person develops SLE.”

The researchers are now working to identify the other players that are involved in the progression of SLE. They hope that as they know more, they may be able to identify those at high risk and diagnose the condition early enough to intervene and reverse the disease. Observational and genetic studies of families with high levels of interferon-alpha will also help them to pinpoint the other factors, including the relevant genetic variations that determine why one family member develops the disease while another doesn’t.

“The hope is that we may be able to use interferon-alpha levels as a measurement to predict who might be at risk to develop this disease,” says Dr. Crow, who is the immediate past president of the American College of Rheumatology. “We can’t do that yet, but the success of this study is very encouraging.”

Jing Hua and Thomas J.A. Lehman at the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery and John B. Harley at the Oklahoma Medical Research Foundation in Oklahoma City also contributed to this paper. This research was funded by the National Institutes of Health, the Alliance for Lupus Research, the Lupus Research Institute and the Mary Kirkland Center for Lupus Research at HSS.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology by U.S. News & World Report, and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center. In the 2006 edition of HealthGrades' Hospital Quality in America Study, HSS received five-star ratings for clinical excellence in its specialties. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Medical College of Cornell University, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Medical College of Cornell University. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

Tracy Hickenbottom | EurekAlert!
Further information:
http://www.hss.edu

Further reports about: HSS Interferon-alpha Lupus Rheumatology SLE autoantibodies orthopedic

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>