Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Identifies Anti-viral Protein That May Predict Who Might be at Risk to Develop Lupus

31.07.2007
Certain families produce higher levels of a specific molecule, called interferon-alpha, that primes the body’s immune system to turn on, and in some cases initiate an autoimmune attack on itself, according to new research from Hospital for Special Surgery in New York City.

Our immune system is able to defeat disease-causing viruses and bacteria every day using chemical weapons, like interferon-alpha, that have been honed over time. But like anything else, we can have too much of a good thing.

Using blood samples from two large repositories, rheumatologist Mary K. Crow, M.D., and her colleagues at Hospital for Special Surgery compared 266 patients with systemic lupus erythematosus (SLE), an autoimmune disease, with 405 of their healthy relatives. Specifically, Dr. Crow, who is director of Rheumatology Research and associate chief of the Division of Rheumatology at Hospital for Special Surgery, and her team were looking at levels of interferon-alpha. The researchers found that when an SLE patient had high blood levels, so did many of their healthy first degree family members. There was a genetic link.

The study, which is now online in advance of print, will be in the September issue of Genes and Immunity.

“There were a number of first degree relatives of patients with SLE that had high interferon-alpha levels,” says Timothy Niewold, M.D., first author of the study and a former rheumatology fellow at Hospital for Special Surgery. “But otherwise, those family members looked and felt perfectly fine. All of their diagnostics were normal.”

Our immune system works by distinguishing self from non-self, so that it preferentially attacks foreign microbes. Interferon-alpha is normally a helpful molecule in this regard, leading the fight against invading viruses. Genes producing high levels of interferon-alpha have probably been selected over time to help fight infection. But high levels of interferon-alpha in some individuals may also confuse the immune system so that it doesn’t know self from non-self anymore – turning and attacking its own tissue as in SLE.

As far back as the 1970s, doctors had known that a characteristic of patients with SLE, who are mainly women in their childbearing years, was an abnormally high blood level of interferon-alpha. However, they didn’t know if the high interferon levels were the cause of the disease or just an associated side-effect.

“A role for interferon-alpha in lupus has been suggested for a number of years,” says Dr. Crow, who is also director of the Autoimmunity and Inflammation Research Program and co-director of the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery. “However, all of the studies to date had focused on how the levels of interferon-alpha were controlled and what the effects of such high levels were. The real question was whether interferon-alpha was playing a primary role in the disease or not.”

The blood samples showed that some family members of patients with high levels of interferon-alpha also had higher levels than unrelated healthy individuals, irrespective of their ethnic background. This observation supported the idea that high interferon-alpha levels play an important primary role in the disease.

Next, the researchers examined the samples for two types of autoantibodies common to SLE patients. SLE patients with low levels of interferon-alpha were more likely to have neither of the characteristic autoantibodies, while patients with the highest levels were more likely to have both. However the healthy family members with high interferon-alpha did not have either autoantibody. This led the scientists to propose a “two-hit” model for the development of lupus. Genetics that cause high levels of interferon-alpha may predispose a person to SLE, but the disease appears only when something else, perhaps an environmental factor, pushes the immune system to the breaking point and causes the production of the damaging autoantibodies.

“The high level of interferon-alpha doesn’t always cause the disease, because many healthy family members have high levels,” says Dr. Niewold, who is now an Instructor in the Section of Rheumatology at the University of Chicago. “We think, however, that those levels somehow prime the immune system, lowering the threshold, so that when the wrong stimulus comes along, the cells of the immune system begin making the autoantibodies and the person develops SLE.”

The researchers are now working to identify the other players that are involved in the progression of SLE. They hope that as they know more, they may be able to identify those at high risk and diagnose the condition early enough to intervene and reverse the disease. Observational and genetic studies of families with high levels of interferon-alpha will also help them to pinpoint the other factors, including the relevant genetic variations that determine why one family member develops the disease while another doesn’t.

“The hope is that we may be able to use interferon-alpha levels as a measurement to predict who might be at risk to develop this disease,” says Dr. Crow, who is the immediate past president of the American College of Rheumatology. “We can’t do that yet, but the success of this study is very encouraging.”

Jing Hua and Thomas J.A. Lehman at the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery and John B. Harley at the Oklahoma Medical Research Foundation in Oklahoma City also contributed to this paper. This research was funded by the National Institutes of Health, the Alliance for Lupus Research, the Lupus Research Institute and the Mary Kirkland Center for Lupus Research at HSS.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology by U.S. News & World Report, and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center. In the 2006 edition of HealthGrades' Hospital Quality in America Study, HSS received five-star ratings for clinical excellence in its specialties. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Medical College of Cornell University, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Medical College of Cornell University. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

Tracy Hickenbottom | EurekAlert!
Further information:
http://www.hss.edu

Further reports about: HSS Interferon-alpha Lupus Rheumatology SLE autoantibodies orthopedic

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>