Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hereditary ALS linked to low electric charge in cells

31.07.2007
Inside the body, our organs are elegantly kept apart by slick membranes. Inside our smallest components, our cells, a similar separation is upheld with the help of electrical charges. In the same way that reversed magnets repel each other, gauzes of negative charges prevent proteins, genetic material, and fats from sticking to each other in the wrong way.

In an article in the scientific journal The Journal of Biological Chemistry, Mikael Oliveberg, professor of biochemistry at Stockholm University in Sweden, describes how disturbances in these functions underlie the hereditary form of the motor-neuron disease Amyotrophic Lateral Sclerosis (ALS).

"Genetic studies have recently shown that even tiny disturbances in this balance of charges are one of the factors that cause the hereditary form of ALS. The disease is basically tied to the SOD1 protein suddenly starting to aggregate in small lumps in the nerve cells of the spinal cord and at the same time withering and dying. When this happens the musculature becomes paralyzed," says Mikeal Oliveberg.

Normally SOD1 proteins avoid this inappropriate lumping because their surfaces are adorned with some 40 negative charges. But if only one of these charges is lost, the disease is incurred-­the proteins can no longer remain soluble. A mystery in this context is that patients who were born with this faulty SOD1 protein remain fully healthy for their first 50-60 years of life. In some way the cells manage to compensate for the faulty proteins, but this capacity is eventually lost with aging.

... more about:
»Cells »Oliveberg »SOD1

"The goal is to be able to stimulate the built-in defense mechanisms that keep us healthy during the first half of our lives so that they have the vigor to keep working a few more years. To do this we need to learn more about why nerve death escalates so suddenly and, above all, so predictably at the molecular level," says Mikael Oliveberg.

Similar mechanisms underlie several other feared protein disorders like Alzheimer's and Parkinson's. The discovery that charges play such a critical role in ALS is an important step toward understanding these processes in a broader perspective.

"Another puzzle is why red deers seem to get along with an SOD1 protein that has a substantially lower negative charge than that in humans. Perhaps their cellular defense mechanisms are tuned differently, or could it be that old elks in fact have a higher propensity to perish from ALS-like symptoms? It would be interesting to hear whether anybody knows anything about this," says Mikael Oliveberg.

Amyotrophic Lateral Sclerosis-associated Copper/Zinc Superoxide Dismutase Mutations Preferentially Reduce the Repulsive Charge of the Proteins, The Journal of Biological Chemistry, Vol. 282, Issue 29, 21230-21236, JULY 20, 2007

Erik Sandelin; Anna Nordlund; Peter M. Andersen; Stefan S. L. Marklund; Mikael Oliveberg, Stockholm University.

Maria Erlandsson | alfa
Further information:
http://www.eks.su.se

Further reports about: Cells Oliveberg SOD1

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>