Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hereditary ALS linked to low electric charge in cells

31.07.2007
Inside the body, our organs are elegantly kept apart by slick membranes. Inside our smallest components, our cells, a similar separation is upheld with the help of electrical charges. In the same way that reversed magnets repel each other, gauzes of negative charges prevent proteins, genetic material, and fats from sticking to each other in the wrong way.

In an article in the scientific journal The Journal of Biological Chemistry, Mikael Oliveberg, professor of biochemistry at Stockholm University in Sweden, describes how disturbances in these functions underlie the hereditary form of the motor-neuron disease Amyotrophic Lateral Sclerosis (ALS).

"Genetic studies have recently shown that even tiny disturbances in this balance of charges are one of the factors that cause the hereditary form of ALS. The disease is basically tied to the SOD1 protein suddenly starting to aggregate in small lumps in the nerve cells of the spinal cord and at the same time withering and dying. When this happens the musculature becomes paralyzed," says Mikeal Oliveberg.

Normally SOD1 proteins avoid this inappropriate lumping because their surfaces are adorned with some 40 negative charges. But if only one of these charges is lost, the disease is incurred-­the proteins can no longer remain soluble. A mystery in this context is that patients who were born with this faulty SOD1 protein remain fully healthy for their first 50-60 years of life. In some way the cells manage to compensate for the faulty proteins, but this capacity is eventually lost with aging.

... more about:
»Cells »Oliveberg »SOD1

"The goal is to be able to stimulate the built-in defense mechanisms that keep us healthy during the first half of our lives so that they have the vigor to keep working a few more years. To do this we need to learn more about why nerve death escalates so suddenly and, above all, so predictably at the molecular level," says Mikael Oliveberg.

Similar mechanisms underlie several other feared protein disorders like Alzheimer's and Parkinson's. The discovery that charges play such a critical role in ALS is an important step toward understanding these processes in a broader perspective.

"Another puzzle is why red deers seem to get along with an SOD1 protein that has a substantially lower negative charge than that in humans. Perhaps their cellular defense mechanisms are tuned differently, or could it be that old elks in fact have a higher propensity to perish from ALS-like symptoms? It would be interesting to hear whether anybody knows anything about this," says Mikael Oliveberg.

Amyotrophic Lateral Sclerosis-associated Copper/Zinc Superoxide Dismutase Mutations Preferentially Reduce the Repulsive Charge of the Proteins, The Journal of Biological Chemistry, Vol. 282, Issue 29, 21230-21236, JULY 20, 2007

Erik Sandelin; Anna Nordlund; Peter M. Andersen; Stefan S. L. Marklund; Mikael Oliveberg, Stockholm University.

Maria Erlandsson | alfa
Further information:
http://www.eks.su.se

Further reports about: Cells Oliveberg SOD1

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>