Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hereditary ALS linked to low electric charge in cells

31.07.2007
Inside the body, our organs are elegantly kept apart by slick membranes. Inside our smallest components, our cells, a similar separation is upheld with the help of electrical charges. In the same way that reversed magnets repel each other, gauzes of negative charges prevent proteins, genetic material, and fats from sticking to each other in the wrong way.

In an article in the scientific journal The Journal of Biological Chemistry, Mikael Oliveberg, professor of biochemistry at Stockholm University in Sweden, describes how disturbances in these functions underlie the hereditary form of the motor-neuron disease Amyotrophic Lateral Sclerosis (ALS).

"Genetic studies have recently shown that even tiny disturbances in this balance of charges are one of the factors that cause the hereditary form of ALS. The disease is basically tied to the SOD1 protein suddenly starting to aggregate in small lumps in the nerve cells of the spinal cord and at the same time withering and dying. When this happens the musculature becomes paralyzed," says Mikeal Oliveberg.

Normally SOD1 proteins avoid this inappropriate lumping because their surfaces are adorned with some 40 negative charges. But if only one of these charges is lost, the disease is incurred-­the proteins can no longer remain soluble. A mystery in this context is that patients who were born with this faulty SOD1 protein remain fully healthy for their first 50-60 years of life. In some way the cells manage to compensate for the faulty proteins, but this capacity is eventually lost with aging.

... more about:
»Cells »Oliveberg »SOD1

"The goal is to be able to stimulate the built-in defense mechanisms that keep us healthy during the first half of our lives so that they have the vigor to keep working a few more years. To do this we need to learn more about why nerve death escalates so suddenly and, above all, so predictably at the molecular level," says Mikael Oliveberg.

Similar mechanisms underlie several other feared protein disorders like Alzheimer's and Parkinson's. The discovery that charges play such a critical role in ALS is an important step toward understanding these processes in a broader perspective.

"Another puzzle is why red deers seem to get along with an SOD1 protein that has a substantially lower negative charge than that in humans. Perhaps their cellular defense mechanisms are tuned differently, or could it be that old elks in fact have a higher propensity to perish from ALS-like symptoms? It would be interesting to hear whether anybody knows anything about this," says Mikael Oliveberg.

Amyotrophic Lateral Sclerosis-associated Copper/Zinc Superoxide Dismutase Mutations Preferentially Reduce the Repulsive Charge of the Proteins, The Journal of Biological Chemistry, Vol. 282, Issue 29, 21230-21236, JULY 20, 2007

Erik Sandelin; Anna Nordlund; Peter M. Andersen; Stefan S. L. Marklund; Mikael Oliveberg, Stockholm University.

Maria Erlandsson | alfa
Further information:
http://www.eks.su.se

Further reports about: Cells Oliveberg SOD1

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>