Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to evolve: With a little help from my ancestors

31.07.2007
Learning to fly is easy, if you are a bird. But why is it that birds learn so easily how to fly? It is well known that birds learn through practice, and that they gradually refine their innate ability into a finely tuned skill.

According to a new theory by Dr Stone of Sheffield University, skills such as flying are easy to refine because the innate ability of today's birds depends indirectly on the learning that their ancestors did, which leaves a genetically specified latent memory for flying.

The theory has been tested on simple models of brains called artificial neural networks, which can be made to evolve using genetic algorithms.

Whilst these networks do not fly, they do learn associations, and these associations could take the form of a skill such as flying. Using computer simulations, Stone demonstrates in a study, publishing in the open access journal PLoS Computational Biology, that the ability to learn in network models has two surprising consequences.

... more about:
»ability »innate »neural

First, learning accelerates the rate at which a skill becomes innate over generations, so it accelerates the evolution of innate skill acquisition. For comparison, evolution is slow if a network simply inherits its innate ability from its parents, but is not allowed to learn in order to improve this innate ability. Second, learning in previous generations indirectly induces the formation of a latent memory in the current generation, and therefore decreases the amount of learning required. It matters how quickly learning occurs, because time spent learning is time spent not eating, or time spent being eaten, which incurs the ultimate penalty for slow learners. These effects are especially pronounced if there is a large biological 'fitness cost' to learning, where biological fitness is measured in terms of the number of offspring each individual has.

Crucially, the beneficial effects of learning depend on the unusual form of information storage in neural networks, a form common to biological and artificial neural networks. Unlike computers, which store each item of information in a specific location in the computer's memory chip, neural networks store each item distributed over many neuronal connections. If information is stored as distributed representations then evolution is accelerated. This may help explain how complex motor skills, such as nest building and hunting skills, are acquired by a combination of innate ability and learning over many generations.

The new theory has its roots in ideas proposed by James Baldwin in 1896, who made the counter-intuitive argument that learning within each generation could guide evolution of innate behaviour over future generations. It now seems that Baldwin may have been more right than he could have guessed, even though concepts such as artificial neural networks and distributed representations were not known in his time.

A previous version of this article appeared as an Early Online Release on June 8, 2007 (doi: 10.1371/journal.pcbi.0030147.eor).

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: ability innate neural

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>