Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to evolve: With a little help from my ancestors

31.07.2007
Learning to fly is easy, if you are a bird. But why is it that birds learn so easily how to fly? It is well known that birds learn through practice, and that they gradually refine their innate ability into a finely tuned skill.

According to a new theory by Dr Stone of Sheffield University, skills such as flying are easy to refine because the innate ability of today's birds depends indirectly on the learning that their ancestors did, which leaves a genetically specified latent memory for flying.

The theory has been tested on simple models of brains called artificial neural networks, which can be made to evolve using genetic algorithms.

Whilst these networks do not fly, they do learn associations, and these associations could take the form of a skill such as flying. Using computer simulations, Stone demonstrates in a study, publishing in the open access journal PLoS Computational Biology, that the ability to learn in network models has two surprising consequences.

... more about:
»ability »innate »neural

First, learning accelerates the rate at which a skill becomes innate over generations, so it accelerates the evolution of innate skill acquisition. For comparison, evolution is slow if a network simply inherits its innate ability from its parents, but is not allowed to learn in order to improve this innate ability. Second, learning in previous generations indirectly induces the formation of a latent memory in the current generation, and therefore decreases the amount of learning required. It matters how quickly learning occurs, because time spent learning is time spent not eating, or time spent being eaten, which incurs the ultimate penalty for slow learners. These effects are especially pronounced if there is a large biological 'fitness cost' to learning, where biological fitness is measured in terms of the number of offspring each individual has.

Crucially, the beneficial effects of learning depend on the unusual form of information storage in neural networks, a form common to biological and artificial neural networks. Unlike computers, which store each item of information in a specific location in the computer's memory chip, neural networks store each item distributed over many neuronal connections. If information is stored as distributed representations then evolution is accelerated. This may help explain how complex motor skills, such as nest building and hunting skills, are acquired by a combination of innate ability and learning over many generations.

The new theory has its roots in ideas proposed by James Baldwin in 1896, who made the counter-intuitive argument that learning within each generation could guide evolution of innate behaviour over future generations. It now seems that Baldwin may have been more right than he could have guessed, even though concepts such as artificial neural networks and distributed representations were not known in his time.

A previous version of this article appeared as an Early Online Release on June 8, 2007 (doi: 10.1371/journal.pcbi.0030147.eor).

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: ability innate neural

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>